
Assignment-1, GEO-1002

Ming-Chieh Hu, Dimitrios Lioumis, Neelabh Singh

October 2024

Project Description

This multi-part assignment we use GRASS GIS to perform 3 types of (geo)spatial analyses that are generally carried out
using GIS software.

1. Solar analyses

2. Network analyses

3. Data integration

Each part is split into smaller exercises.

Assignment Group Members

In alphabetical order by surname:

SURNAME 1: Hu
NAME 1: Ming-Chieh
STUDENT ID 1: 6186416
STUDY PROGRAMME 1: Geomatics

SURNAME 2: Lioumis
NAME 2: Dimitrios
STUDENT ID 2: 6213944
STUDY PROGRAMME 2: Geomatics

SURNAME 3: Singh
NAME 3: Neelabh
STUDENT ID 3: 6052045
STUDY PROGRAMME 3: Geomatics

Fraud And Plagiarism Awareness

We confirm herewith that we have read and we are aware of the TU Delft rules (and consequences) regarding fraud and pla-
giarism, as written in https://www.tudelft.nl/en/student/my-study-me/rules-guidelines-and-participation/fraud-plagiarism

Work Allocation Summary

Part 1: Ming-Chieh Hu, Dimitrios Lioumis, approx. 15 hours
Part 2: Neelabh Singh, Ming-Chieh Hu, approx. 16 hours
Part 3: Dimitrios Lioumis, Neelabh Singh, approx. 14 hours
Report Assembling: Ming-Chieh Hu, approx. 4 hours

1

https://www.tudelft.nl/en/student/my-study-me/rules-guidelines-and-participation/fraud-plagiarism

Contents

1 Part 1: Solar Analyses 3
1.1 Exercise 1.1 . 3
1.2 Exercise 1.2 . 3
1.3 Exercise 1.3 . 4
1.4 Exercise 1.4 . 5
1.5 Exercise 1.5 . 6
1.6 Exercise 1.6 . 8
1.7 Exercise 1.7 . 9
1.8 Exercise 1.8 . 10
1.9 Exercise 1.9 . 12
1.10 Exercise 1.10 . 14

2 Part 2: Network Analyses 15
2.1 Exercise 2.1 . 15
2.2 Exercise 2.2 . 18
2.3 Exercise 2.3 . 20
2.4 Exercise 2.4 . 21
2.5 Exercise 2.5 . 22
2.6 Exercise 2.6 . 24

3 Part 3: Data Integration 26
3.1 Exercise 3.1 . 26
3.2 Exercise 3.2 . 27

3.2.1 Step 1: Perform an initial union without snapping (misalignment check) 27
3.2.2 Step 2: Perform union with snapping . 30
3.2.3 Step 3: Clean the union layer . 32
3.2.4 Step 4: Dissolve based on CODE 00 . 32

3.3 Exercise 3.3 . 33
3.4 Exercise 3.4 . 35

2

1 Part 1: Solar Analyses

1.1 Exercise 1.1

Load GRASS GIS, select GRASS location “trento” and GRASS mapset “dtm”. Find the following datasets in folder
/data/trento data, load them into mapset “dtm” and name the resulting GRASS layers trento extents and dtm, respectively:

• trento extents.shp: A single polygon representing the area that will be used to set the region in GRASS.

• dtm trento.asc: An ASCII grid file representing the DTM of the study area in Trento.

Once you are done with the import, be sure to set the working region to correspond to the trento extents layer. Set the grid
resolution to 1m, for now. Visualise the layers, for the dtm layer display the legend, check the values range, etc.

Import data

v.import -l input=/vector/filepath output=trento_extents

r.in.gdal -o -r input=/raster/filepath output=dtm

Set region to match trento extents

g.region res=1

g.region vector=trento_extents@dtm

g.region -p raster=dtm@dtm

Figure 1: imported dtm raster map

1.2 Exercise 1.2

Create now a new mapset (g.mapset) named “solar 25”, and start working in it. Set the grid resolution to 25m, the region
extents need to correspond to the trento extents layer. Resample (r.resample) the dtm layer and create a new raster dtm 25.
Using dtm 25, compute the slope and aspect maps, called slope 25 and aspect 25, respectively. Add to the report screenshots
of the three newly generated maps.

Resample dtm to resolution 25

g.mapset -c mapset=solar_25

g.region raster=dtm@dtm res=25

g.region -p

r.resample input=dtm@dtm output=dtm_25

3

Figure 2: resampled dtm 25 raster map

Compute the slope and aspect maps

r.slope.aspect elevation=dtm_25 slope=slope_25 aspect=aspect_25

Figure 3: aspect map generated from dtm 25 Figure 4: slope map generated from dtm 25

1.3 Exercise 1.3

Keep working at 25-m resolution and compute 8 horizon maps (r.horizon, read the documentation), one for each cardinal
and intercardinal direction. Check that the maps are generated using a prefix (e.g. “horizon”). At the end, the layers should
be like: horizon 000, horizon 045, . . . , etc.

Compute 8 horizon height maps

r.horizon elevation=dtm_25 step=45 start=0 end=360 output=horizon

Here we use the step, start, end parameter to generate 8 horizon maps at once.

4

Figure 5: horizon maps in 8 different directions

1.4 Exercise 1.4

Load the r.sun module and read the documentation carefully. First, you will compute the global solar irradiation for a single
day: the 15th January. In order to do this, you will need the dtm, slope, aspect and horizon maps computed before (all at
25 m resolution). For the rest, you can use the default values for the Linke coefficient (3.0) and ground albedo (0.2). The
output layer will be called irr global 015 (15 is the index of the day with respect to a 365-day year). Once you are done,
explore the map, understand what “numbers” are contained. What are the units of measure of map irr global 015?

Compute global solar irradiation for 15th January

r.sun elevation=dtm_25 aspect=aspect_25 slope=slope_25 horizon_basename=horizon horizon_step=45

day=15 glob_rad=irr_global_015

the unit used in this map is Wh/m2 (Watt-hour per square meter). Watt-hour is a unit of energy equal to one watt of power
expended (used) for one hour.

Figure 6: solar irradiation map of 15th January

Figure 7: histogram of irr global 015 values

In order to obtain the irradiation maps for the whole year (you will do this later), you will first run r.sun a number of times
to compute the solar irradiation in different periods of the year. For the sake of the computational time needed, we will
approximate this operation in this exercise by computing only 12 daily values. Run r.sun accordingly, and store for each
day a raster layer named irr global xxx, where xxx is the index of the corresponding day. Visualise the maps and check the
legends.

5

Figure 8: solar irradiation map of 15th August

Figure 9: histogram of irr global 227 values

Figure 10: global solar irradiation map in 12 months

Comparing histograms and figure 6, 7, 8, 9 we can see that the solar irradiation values varies a lot, and they have different
distribution as well. In figure 10, the irradiation maps for all 12 months are shown, but they are not directly comparable
due to inconsistent color schemes. To ensure accurate visual comparisons, we need to standardize the value-to-color mapping
across all maps.

1.5 Exercise 1.5

Visualise the maps (and check the legends). What do you notice? Compare, for example, December and June. Force all
the irr glob xxx maps to use the same colour coding. For this, you need first to find out which the overall maximum and
minimum values all over the year are (according to the maps you computed), and then define a file containing the colour
rules to be assigned to all rasters.

Check the maximum and minimum values from raster maps

6

r.univar map=

irr_global_015,irr_global_045,irr_global_074,irr_global_105,irr_global_135,irr_global_166,

irr_global_196,irr_global_227,irr_global_258,irr_global_288,irr_global_319,irr_global_349

...

Of the non-null cells:

n: 270000

minimum: 283.232

maximum: 9086.95

range: 8803.72

mean: 5188.18

mean of absolute values: 5188.18

standard deviation: 2545.42

variance: 6.47916e+06

variation coefficient: 49.0618%

sum: 1400809893.45132

The corresponding color rule file

200 violet

1500 blue

3200 cyan

4700 green

6200 yellow

7700 orange

9100 red

Remap all the irr glob xxx maps

r.colors map=

irr_global_015,irr_global_045,irr_global_074,irr_global_105,irr_global_135,irr_global_166,

irr_global_196,irr_global_227,irr_global_258,irr_global_288,irr_global_319,irr_global_349

rules=/color/rule/filepath

Plot the legend in scale of remapped value

d.legend title="solar irradiation (Wh/m2)" range=200,9100 raster=irr_global_015

Figure 11: recolored global solar irradiation map in 12 months

7

1.6 Exercise 1.6

Using map algebra (r.mapcalc), compute the annual global solar irradiation map in MWh/(m2 ∗ a) and the average daily
global irradiation in kWh/(m2 ∗ d). The new layers are called irr glob and irr glob avg day, respectively. Consider a stan-
dard year of 365 days. Add proper screenshots (with legend) of these maps.

Additionally, create a map called irr glob gt 19 which contains only those areas that have a value of annual global so-
lar irradiation ≥ 1.9 MWh/(m2 ∗ a). Add a screenshot of this map (with legend) to the report.

Finally, if you haven’t already done, create a binary map, called irr glob gt 19 bin, that consists of 1 values for all cells of
irr glob gt 19 that are not null, and 0 otherwise. You will need this map later.

For each month, the total solar irradiation is calculated by multiplying the daily irradiation by the number of days in that
month, denoted as Imonth = Iday × Nday. Example for January: IJan = IJan 15th × 31. The total annual global solar
irradiation is the summation of the solar irradiation for each month, denoted as: Iyear = Σ12

i=1 Imonth i. Where Monthly
Irradiation, is the irradiation map for the ith month.

Calculate the annual global solar irradiation map

r.mapcalc expression="irr_glob_year = (

irr_global_015 * 31 + irr_global_045 * 28 + irr_global_074 * 31 +

irr_global_105 * 30 + irr_global_135 * 31 + irr_global_166 * 30 +

irr_global_196 * 31 + irr_global_227 * 31 + irr_global_258 * 30 +

irr_global_288 * 31 + irr_global_319 * 30 + irr_global_349 * 31) / 1000000"

Figure 12: annual global solar irradiation map Figure 13: histogram of irr glob year values

Calculate the average daily global irradiation map

r.mapcalc expression="irr_glob_avg_day = irr_glob_year * 1000 / 365"

Figure 14: average daily global irradiation map Figure 15: histogram of irr glob avg day values

Filter values from annual global solar irradiation

r.mapcalc expression="if((irr_glob_year >= 1.9), irr_glob_year,null())"

Create binary map for filtered result

8

r.mapcalc expression="if((irr_glob_year >= 1.9),1,0)"

Show statistics

r.univar map=irr_glob_year_gt_19

total null and non-null cells: 23104

total null cells: 8277

Of the non-null cells...

What are the extents (in m2) of the selected area(s)?
The statistics showed there are 23104 cells in this square area and 8277 of them are not selected (with NULL value). Thus,
we conducted the selected area is 14827 ∗ 25 ∗ 25 = 9266875m2.

Figure 16: filtered annual global solar irradiation map Figure 17: filtered binary map

1.7 Exercise 1.7

You will now partially repeat the same solar analyses done before, but investigating the role of the raster resolution. Create
a new mapset called “solar 5”, and set the raster resolution at 5 m.
Always working at 5 m resolution, repeat the steps carried out before to resample the dtm and to generate the 8 horizon
maps. If you have created a script before, this exercise will be rather simple because you only need to slightly adapt the
script for the new mapset and resolution, and to rename the new layers accordingly (e.g. dtm 5, slope 5, aspect 5, etc.)
When you are done:

• Add a new image representing layer dtm 5 (with legend)

• Add two representative screenshots of the new horizon maps, i.e. those computed for angle 00 and 90 (with legends).

Create nea mapset and resample dtm to resolution 5

g.mapset -c mapset=solar_25

g.region raster=dtm@dtm res=25

g.region -p

r.resample input=dtm@dtm output=dtm_25

Compute the slope and aspect maps

9

r.slope.aspect elevation=dtm_25 slope=slope_25 aspect=aspect_25

Figure 18: resampled dtm 5 raster map

Compute 8 horizon height maps

r.horizon elevation=dtm_5 step=45 start=0 end=360 output=horizon

Figure 19: horizon height map from the east (0 degree) Figure 20: horizon height map from the north (90 drgree)

1.8 Exercise 1.8

Always working at 5m resolution, repeat now the necessary steps described before to compute the 12 monthly values of total
solar irradiation, and to obtain the “new” irr glob year and irr glob avg day, however at 5 m resolution. Again, this exercise
can be carried out by adapting the script written for the previous exercises. Be aware that the computation time will be a
bit longer due to the increased resolution. Therefore, check carefully the script before running it!

• Add to the report the screenshots of two “new” solar maps at 5m resolution, i.e. for June and December (with legends).

• Compute and add to the report the maximum and minimum values of daily global solar irradiation computed with the
new maps at 5 m resolution, similarly as in Exercise 1.5 (you do not need to redo the colour styling).

• Add to the report the screenshots of the “new” irr glob year and irr glob avg day maps at 5 m resolution (with legends).

• Compute and add to the report the screenshot of the “new” irr glob year gt 19 layer at 5 m resolution (with legend).

• Finally, compute and add a screenshot to the report of the “new” binary map irr glob year gt 19 bin, obtained from
the irr glob year gt 19 at 5 m resolution computed in this exercise.

10

Compute global solar irradiation for 12 months

r.sun elevation=dtm_5 aspect=aspect_5 slope=slope_5 horizon_basename=horizon horizon_step=45

day=15 glob_rad=irr_global_015

r.sun elevation=dtm_5 aspect=aspect_5 slope=slope_5 horizon_basename=horizon horizon_step=45

day=45 glob_rad=irr_global_045

...

r.sun elevation=dtm_5 aspect=aspect_5 slope=slope_5 horizon_basename=horizon horizon_step=45

day=349 glob_rad=irr_global_349

Figure 21: solar irradiation map of 15th June Figure 22: solar irradiation map of 15th December

Check the maximum and minimum values from raster maps

r.univar map=

irr_global_015,irr_global_045,irr_global_074,irr_global_105,irr_global_135,irr_global_166,

irr_global_196,irr_global_227,irr_global_258,irr_global_288,irr_global_319,irr_global_349

...

Of the non-null cells:

n: 6894756

minimum: 230.861

maximum: 9150.4

range: 8919.54

mean: 5132.38

mean of absolute values: 5132.38

standard deviation: 2551.53

variance: 6.51028e+06

variation coefficient: 49.7143%

sum: 35386517311.7231

Calculate the annual global solar irradiation map

r.mapcalc expression="irr_glob_year = (

irr_global_015 * 31 + irr_global_045 * 28 + irr_global_074 * 31 +

irr_global_105 * 30 + irr_global_135 * 31 + irr_global_166 * 30 +

irr_global_196 * 31 + irr_global_227 * 31 + irr_global_258 * 30 +

irr_global_288 * 31 + irr_global_319 * 30 + irr_global_349 * 31) / 1000000"

Calculate the average daily global irradiation map

r.mapcalc expression="irr_glob_avg_day = irr_glob_year * 1000 / 365"

11

Figure 23: annual global solar irradiation map Figure 24: average daily global solar irradiation map

Filter values from annual global solar irradiation

r.mapcalc expression="if((irr_glob_year >= 1.9), irr_glob_year,null())"

Create binary map for filtered result

r.mapcalc expression="if((irr_glob_year >= 1.9),1,0)"

Figure 25: filtered annual global solar irradiation map Figure 26: filtered binary map

1.9 Exercise 1.9

Working at 5 m resolution, compute a new map, called irr glob year gt 19 bin diff that represents the difference between
irr glob year gt 19 bin@solar 25 and irr glob year gt 19 bin@solar 5. Add a screenshot (with legend) to the report.

Answer the following questions:

• What can you say about map irr glob year gt 19 bin diff?

• What can you say about the minimum and maximum values of daily global solar irradiation computed at 25 and at 5
m resolution, respectively? What could be the reason?

• What can you say about the irr glob year and irr glob avg day maps computed at 25 and at 5 m resolution, respectively?

• What can you say about the values of total area with an annual global solar irradiation ≥ 1.9 MWh/(m2 ∗ a) and
computed at 25 and at 5 m resolution, respectively? How much is the difference, in %?

Calculate the difference between 2 binary maps

r.mapcalc expression="xor(irr_glob_year_gt_19_bin@solar_5, irr_glob_year_gt_19_bin@solar_25)"

The difference map irr glob year gt 19 bin diff (figure 27) is showing some similar to those observed in the aspect map (figure
3). Resampling at a coarser resolution leads to a slight loss of detail, particularly at the boundaries where elevation changes.
This effect is most notable along the edges of distinct objects, textures, mountains, rivers, and other features.

12

Figure 27: difference map

Check the maximum and minimum values from irr glob avg day

r.univar map=irr_glob_avg_day@solar_5

...

Of the non-null cells:

n: 574563

minimum: 0.549077

maximum: 6.97799

range: 6.42891

mean: 5.14233

mean of absolute values: 5.14233

standard deviation: 0.675842

variance: 0.456762

variation coefficient: 13.1427%

sum: 2954593.9249717

r.univar map=irr_glob_avg_day@solar_25

...

Of the non-null cells:

n: 22500

minimum: 1.28107

maximum: 6.82602

range: 5.54495

mean: 5.19824

mean of absolute values: 5.19824

standard deviation: 0.579874

variance: 0.336253

variation coefficient: 11.1552%

sum: 116960.44225955

For 5m resolution the minimum value is lower and the maximum value is higher. We think the main reason of this phenomena
is that the sampling method tends to reduce some of the extremes. Finer resolution (e.g., 5 m) tends to capture more extreme
minimum and maximum values due to its ability to model smaller, more localized terrain and solar variations. Resample to
a finer coarser resolution (e.g., 25 m), especially with nearest neighbor algorithm, tends to smooth out variations, leading to
less extremes in the map.

Also, according to GRASS documentation of r.resample: The method by which resampling is conducted is ”nearest neighbor”
(see r.neighbors). The resulting raster map layer will have the same resolution as the resolution of the current geographic
region (set using g.region).

Check the maximum and minimum values from irr glob year

13

r.univar map=irr_glob_year@solar_5

...

Of the non-null cells:

n: 574563

minimum: 0.200413

maximum: 2.54697

range: 2.34655

mean: 1.87695

mean of absolute values: 1.87695

standard deviation: 0.246682

variance: 0.0608521

variation coefficient: 13.1427%

sum: 1078426.78259648

r.univar map=irr_glob_year@solar_25

...

Of the non-null cells:

n: 22500

minimum: 0.467592

maximum: 2.4915

range: 2.02391

mean: 1.89736

mean of absolute values: 1.89736

standard deviation: 0.211654

variance: 0.0447974

variation coefficient: 11.1552%

sum: 42690.5614324212

According to the formula we used, irr glob avg day has similar proportions as irr glob year but divided by 365 and used
different unit. We can see the variation coefficient (V C = σ

µ) is the same in both irr glob avg day and irr glob year maps

(in same resolution).

Check the values from irr glob year

r.univar map=irr_glob_year_gt_19@solar_5

total null and non-null cells: 577599

total null cells: 228451

Of the non-null cells:

n: 349148

...

r.univar map=irr_glob_year_gt_19@solar_25

total null and non-null cells: 23104

total null cells: 8277

Of the non-null cells:

n: 14827

...

Calculate area
Area with annual global solar irradiation ≥ 1.9 MWh/(m2*a) in 5m resolution: area = 349148 ∗ 5 ∗ 5 = 8728700(m2).
Area with annual global solar irradiation ≥ 1.9 MWh/(m2*a) in 25m resolution: area = 14827 ∗ 25 ∗ 25 = 9266875(m2).
The difference of these values calculated in different resolutions is (9266875− 8728700)/9266875 = 5.8%

At a 25m resolution, the averaging effect smooths out small-scale variations, resulting in more areas with solar irradiation
values greater than 1.9 MWh/(m2*a). In contrast, the finer detail at 5m resolution captures these variations more accurately,
showing more areas with lower irradiation values and reducing the total area that exceeds the threshold.

1.10 Exercise 1.10

Write a short reflection (max 200 words) on the type of solar analyses you carried out on this test site in Trento.

• What have you learned?

• What are, in your opinion, the shortcomings of this approach?

• How and in which parts could it be improved?

Through this exercise, We learned how to perform a solar analysis in GRASS GIS, including resampling, generating slope
and aspect maps, and working with data manipulation and visualization. We also gained insight into how resolution affects
the accuracy of irradiation values—coarser resolution maps reveal broader trends, while finer resolution maps capture more
local variations.

However, the analysis has some shortcomings. First, calculating annual solar irradiation using only 12 monthly raster
maps is efficient but not highly accurate. Second, resolution significantly impacts the results, as seen in the differences
between 5m and 25m resolutions (which also affect computation time).

To improve this analysis, we need to carefully choose the appropriate resolution to balance insights into both trends and local
variations without compromising performance. Additionally, incorporating more global irradiation or weather data could
enhance the accuracy of the predictions.

14

2 Part 2: Network Analyses

2.1 Exercise 2.1

Launch GRASS GIS and create a new location “padova”. EPSG code is 3003. Create a new mapset called “geo1002”.
Import the shapefiles street line.shp and street crossing.shp into vectors street lines and street crossing, using v.in.ogr from
the GRASS command console. Upon import, pay attention that field “cat” is used to generate the categories in the GRASS
layer (it is one of the import optional parameters!). Categories, in GRASS, correspond to IDs and are used to identify
uniquely a feature.

Add a screenshot of each imported dataset to the report. For the street crossing layer, create a map that shows not only the
geometries, but also the associated cat values. In the latter case, if the density of crossings is too dense, you can zoom in
and create a screenshot of a portion of the map, so that it is still readable.

Create location “pavoda” and mapset “geo1002” with EPSG 3003

Figure 28: create new location “pavoda” with EPSG code 3003

15

Visualise street line layer and keep cat as key value

v.in.ogr input="/street_line/filepath" output=street_lines key="cat"

Figure 29: a new vector map added in the project named as street line

Visualise street crossing layer and keep cat as key value

v.in.ogr input="/street_crossing/filepath" output=street_crossing key="cat"

Figure 30: a new vector map added in the project named as street crossing

Display street crossing layer cat labels

16

d.vect map=street_crossing@geo1002 attribute_column=cat label_color=255:26:23:255

Figure 31: a close up of street crossing with cat value labelled in red

17

2.2 Exercise 2.2

Before performing any network operations, you need to build a new vector layer that stores all topological information. In
other words, in GRASS GIS you need to connect the nodes (points) to the current edges (the streets).

Use module v.net (read the manual), and using the two previous vector layers as input, create a new layer street graph assign-
ing the edges to layer 1, the nodes to layer 2. In GRASS, you end up having a vector file which contains different entities: in
layer 1 the (poly)lines, in layer 2 the points. Additionally, each layer can be associated to a different table! Layer 1 to the ta-
ble of vector street lines, layer 2 to that of street crossing. For the “threshold” parameter, please use a value of 0.25 (meters).

Create street graph with polyline in Layer 1 and point in Layer 2

v.net input=street_lines@geo1002 points=street_crossing@geo1002 output=street_graph operation=connect

threshold=0.25

Visualise the existing layers in street graph

v.category street_graph@geo1002 op=report

Figure 32: street graph network map with polyline in layer 1 and points in Layer 2

Connect point layer street crossing table to street graph Layer2

v.db.connect map=street_graph table=street_crossing@geo1002 layer=2

18

Figure 33: street graph layer information

Figure 34: street graph table information

19

2.3 Exercise 2.3

Using street graph as input, create and store a vector layer named street path where you compute the shortest path between
nodes 396 and 369, i.e. from the “beginning” of the motorway to a place in the city centre. When you are done, properly
visualise the street graph and street path layers.

Calculate a shortest path between node 369 and 396 using time as the cost

v.net.path input=street_graph@geo1002 output=street_path file="/points/.tmp/filepath" arc_column=tm_to

arc_backward_column=tm_from node_column=time

Visualize node 396 and 369

d.vect map=street_graph@geo1002 layer=2 display=shape,cat color=red size=20 icon=basic/cross2

where="cat IN (396,369)"

Figure 35: shortest path (green colour) between node 396 and 369 created from street graph

20

2.4 Exercise 2.4

Using the traversal time as cost parameter, perform now a network allocation operation, in that you create subnetworks
referring to the respective (sub)net centres. Using street graph as input, create and store vector layer street alloc where you
split the whole network into 5 (sub)networks according to nodes with categories 1178, 2181, 935, 650, and 1619. Learn how
to visualise the 5 (sub)networks in different colours and do not forget to show the result also in the report.

Create a network allocation model on 5 nodes, using traversal time as cost parameter

v.net.alloc input=street_graph@geo1002 output=street_alloc center_cats="1178, 2181, 935, 650, 1619"

arc_column=tm_from arc_backward_column=tm_to node_column=time

Figure 36: street alloc: 5 subnetworks from street graph in different colours, created with node 1178, 2181, 935, 650 and
1619

Look properly at the results, have all edges been used and allocated to the 5 subnetworks? Explain your
findings (max 100 words).

We can see above, some edges have not been allocated to any subnetwork. This is very prominent where edges or streets
are around the boundary of the map, as it is disconnected from the main network. The allocation process can only assign
any street to a sub-network based on its connectivity and proximity to the sub-centers. To have a more refined result of
sub-networks, it is important to introduce more nodes that connect all the edges to the network, so that no street or crossing
is isolated from the system, topological correctness can also be done.

21

2.5 Exercise 2.5

Compute now isochrones from a node in the graph. Using street graph as input, create and store vector layer street iso.
Starting from the train station (node cat=1426), create the (sub)networks corresponding the isochrones from the train station
at 1-minute, 2-minute and 5-minute drive. Pay attention to how (i.e. in which units of measure) you express time!

Visualise the (sub)networks and provide screenshots of the results.

Create isochrones from node 1426 i.e the train station, by taking time as cost

v.net.iso -u input=street_graph@geo1002 output=street_iso center_cats=1426 costs="60, 120, 300"

arc_column=tm_from arc_backward_column=tm_to node_column=time

The isochrone map will show the spread for driving at the maximum speed limit, using time as the cost for values of 60s,
120s, and 300s, as illustrated in the following map. (The -u flag ensures that an attribute table is created.)

Visualize the isochrone map

v.db.addcolumn map=street_iso@geo1002 columns="isolbl_numeric INT"

To visualize the isochrone map with random coloring, we need to add a numeric column that stores the values of the five
cases and apply color based on those values.

Add numeric value for all 5 cases

v.db.update map=street_iso@geo1002 column=isolbl_numeric value=1 where="isolbl = '0 - 60'"
v.db.update map=street_iso@geo1002 column=isolbl_numeric value=2 where="isolbl = '60 - 120'"
v.db.update map=street_iso@geo1002 column=isolbl_numeric value=3 where="isolbl = '120 - 300'"
v.db.update map=street_iso@geo1002 column=isolbl_numeric value=4 where="isolbl = '> 300'"
v.db.update map=street_iso@geo1002 column=isolbl_numeric value=5 where="isolbl = 'unreachable'"

Colour according to the numeric value present in isolbl numeric column

v.colors map=street_iso@geo1002 color=bcyr column=isolbl_numeric

Figure 37: table of street iso with isolbl and isolbl numeric colour

Visualise the node of train station with cat value 1426

d.vect map=street_graph@geo1002 layer=2 display=shape,cat color=red size=20 icon=basic/cross2

where="cat = 1426"

22

Value 1: Blue, 0 - 60

Value 2: Cyan, 60 - 120

Value 3: Yellow, 120 - 300

Value 4: Red, > 300

Value 5: Brown, unreachable

Figure 38: street iso from node 1426 (train station) with time as cost parameter using values of 60s, 120s and 300s values,
created from street graph network

23

2.6 Exercise 2.6

Compute now the isochrones, however for pedestrians. Using street graph as input, create and store vector layer street iso p.
Here the new criteria:
a) The max walking speed of a person to 4 km/h
b) A person can walk on any street except those of class A1 and A2 (Motorways and Ring roads)
c) The traversal time is the same in both directions of an edge.
d) The traversal time for crossing remains the same as before.
Compute now the isochrones for walking distance up to 5 and 10 minutes from the main train station (node cat=1426).
Visualise the (sub)networks and provide screenshots of the results.

Add a column time walk with type double for values of walking time in seconds

v.db.addcolumn map=street_graph@geo1002 columns="tm_walk double precision"

To calculate the walking time in seconds and add it to the time walk column, we exclude two roads that are restricted for
pedestrian access by assigning a cost value of -1, and also assign -1 to edges with a value of 0 to achieve a more refined
result. (Nodes and arcs can be closed using cost = -1.) To calculate time walk in metres per second with an average speed
of 4km/hr which is around 1.11m/s, simply divide the length by 1.11.

Calculate and add the walking time to the time walk column

v.db.update map=street_graph@geo1002 column=tm_walk value="CASE WHEN street_typ IN ('A1_Motorway', 'A2_Ring Road') OR tm_walk = 0 THEN -1 ELSE length / 1.111 END"

Add the column for the units of time walk

v.db.addcolumn map=street_graph@geo1002 columns="tm_walk_units varchar(10)"

Update the units column with value s

v.db.update map=street_graph@geo1002 column=tm_walk_units value='s'

Figure 39: the updated table of street graph with a new time walk field

The street graph table (figure 39) includes a new time walk field, which is calculated based on walking time along the edges
at an average speed of 1.11 m/s, with -1 values assigned to A1 and A2 roads.

Create isochrones from node 1426 i.e the train station, by taking time as cost

v.net.iso -u input=street_graph@geo1002 output=street_iso_p center_cats=1426 costs="300, 600"

arc_column=tm_walk arc_backward_column=tm_walk node_column=time

The isochrone map shows the spread for walking at a maximum speed of 4 km/h (1.11 m/s), using time as the cost parameter
for 300 and 600 seconds, as depicted in the following map.

Visualise the node of train station with cat value 1426

24

d.vect map=street_graph@geo1002 layer=2 display=shape,cat color=red size=20 icon=basic/cross2

where="cat = 1426"

Value 1: Grey, 0 - 300

Value 2: Red, 300-600

Value 3: Brown, <600

Value 4: Black, unreachable

Figure 40: street iso p map, created from updated street graph

How do these subnetworks differ from the ones of the previous Exercise 2.5? (max 100 words)

One of the main differences between isochrones reflecting subnetworks for walking and driving is the coverage, as the
driving speed limit is higher in case of driving, and the cost, which is the traversal time, is significantly less. Hence, the
subnetworks formed for driving are more widely spread than walking sub-networks, which has an average speed of 4 km/hr
only. Additionally, as 2 classes of roads (A1 and A2) are restricted for pedestrians, it results in a more fragmented subnetwork
for walking, whereas in the case of the subnetwork of driving, it is a more connected, accessible, and wider subnetwork.

25

3 Part 3: Data Integration

3.1 Exercise 3.1

Launch GRASS GIS and create a new location “corine”. Create a new mapset called “geo1002”. Import the shapefiles
listed above into vector layers tile39 and tile40, respectively. Provide a simple screenshot of the imported datasets. For your
convenience, set the GRASS region to comprise the extents of both datasets.

Open GRASS GIS
For Task 3, we began by launching GRASS GIS and creating a new database. While creating a database wasn’t strictly
necessary, it helped manage the workload more efficiently.

Create the location
Next, we created a new location named “corine” using the ”Create new location” option. We set the EPSG code to 3035 for
this location to ensure compatibility with our data in future steps.

Import the shapefiles and set the region

v.import input=/data/corine_data/100KME39N32.shp output=tile39

v.import input=/data/corine_data/100KME40N32.shp output=tile40

To import the required shapefiles, we used the command console and executed the v.import function. By default, v.import
will reproject the data to match the location’s Coordinate Reference System (CRS). However, since the shapefiles are already
in EPSG:3035 (matching our location), GRASS GIS imported the data without needing reprojection.
Now that we have already set the CRS of our location, our data reproject on the fly to EPSG: 3035. Although, the data
were already on EPSG: 3035. To check if the tiles are in the same projection as the locations CRS we used the following:

v.info map=tile39

v.info map=tile40

Figure 41: CRS validation for tiles 39,40

We can validate that TRS89 / LAEA Europe (commonly referred to as ETRS89-extended or ETRS89 Lambert Azimuthal
Equal Area) corresponds to EPSG:3035. This projection is widely used for pan-European data, particularly in environmental
and land cover datasets like CORINE, as it minimizes distortion across the European continent. To make sure that any
spatial operation we perform will be done on the extent of the two tiles, we use the g.region function.

Set the region to tile39 and tile40

g.region vector=tile39,tile40

Confirm the region settings after running the command

26

g.region -p

Figure 42: region validation for tiles 39,40

We can validate from figure 3.1, 3.1 that the extent of the region matches the extent of the 2 tiles.

Figure 43: tile 39 and 40 are imported and the region is set to the extent of both

3.2 Exercise 3.2

Define a proper set of operations (mostly overlay ones!) with the goal of merging both tiles into one. The result must be a
vector layer named tile39 40 with the polygons and the CODE 00 attribute from both tiles. Adjacent polygons having the
same CODE 00 but originally split over the two datasets must be joined and dissolved in layer tile39 40. Provide evidence
in the report – and a short explanation – of the steps and operations you carry out, as there are different ways to carry out
this exercise. Whenever necessary, add a screenshot to illustrate the (intermediate) results.
To ensure a seamless integration of tile39 and tile40, this process involves an initial union without snapping to detect potential
boundary misalignments. After identifying any misalignments, we proceed with a snapped union to align boundaries, followed
by cleaning and dissolving steps to finalize the merged layer.

3.2.1 Step 1: Perform an initial union without snapping (misalignment check)

We run v.overlay without snapping to merge tile39 and tile40 initially, without attempting to align boundaries.

Create a union of the 2 tiles without snapping

27

v.overlay ainput=tile39 binput=tile40 operator=or output=tile39_40_union_no_snap

Figure 44: creating a Union for Tiles 39 and 40 without snapping parameters

This step helps us identify potential misalignments between the tiles along their shared boundary. By not snapping, we
preserve any small gaps or overlaps, allowing us to analyze if the boundaries align as expected or if discrepancies are present.

Add a column to populate the corine code from both tiles

v.db.addcolumn map=tile39_40_union_no_snap column="CODE_00"

We add a CODE 00 column to hold the merged land cover code from a CODE 00 (from tile39) and b CODE 00 (from tile40):

Figure 45: field CODE 00 creation

populate the column with the following conditions using the v.db.update function

Use a CODE 00 where b CODE 00 is NULL

v.db.update map=tile39_40_union_no_snap column=CODE_00 query_column=a_CODE_00

where="b_CODE_00 IS NULL"

Use b CODE 00 where a CODE 00 is NULL

28

v.db.update map=tile39_40_union_no_snap column=CODE_00 query_column=b_CODE_00

where="a_CODE_00 IS NULL"

Use either value where both are equal, indicating alignment

v.db.update map=tile39_40_union_no_snap column=CODE_00 query_column=a_CODE_00

where="a_CODE_00 = b_CODE_00"

This step is crucial for confirming alignment. If there are records where a CODE 00 and b CODE 00 both have values but
differ, it indicates a misalignment. By checking this, we can determine if snapping is necessary to achieve a seamless merge.

Figure 46: Use a CODE 00 where b CODE 00 is NULL

Figure 47: Use b CODE 00 where a CODE 00 is NULL

Figure 48: Use a CODE 00 where a CODE 00 = b CODE 00

To spot misalignment, the key is to identify records where both a CODE 00 and b CODE 00 have values, but those values
are not the same. After running the updates to populate CODE 00 in cases where a CODE 00 or b CODE 00 is null or where
they are equal, any records where a CODE 00 and b CODE 00 differ will remain unpopulated in the CODE 00 column. This
means that records with no value in CODE 00 indicate areas of misalignment between the tiles.
This means that:

• Both a CODE 00 and b CODE 00 have values

• a CODE 00 and b CODE 00 have different values

• The CODE 00 column is unpopulated for these records

29

In order to find the unpopulated records of CODE 00 where the above criteria are valid we wrote the following SQL code in
the SQL Query Builder of the attribute table for the dataset of the tile39 40 union no snap.

SQL CODE

SELECT * FROM tile39_40_union_no_snap

WHERE a_CODE_00 IS NOT NULL AND b_CODE_00 IS NOT NULL AND a_CODE_00 != b_CODE_00;

Figure 49: selected records with desired criteria before snapping

We understand from the selected records in Screenshot 3.9 that there are 85 records where a CODE 00 and b CODE 00 are
populated but have different values. That means that these polygons overlap but are misaligned.

3.2.2 Step 2: Perform union with snapping

We now run v.overlay with snapping to correct the minor boundary misalignments. This aligns vertices within a defined
tolerance, creating a unified layer that resolves any discrepancies.
Create a Union of the 2 tiles with snapping parameters

v.overlay ainput=tile39 binput=tile40 operator=or output=tile39_40_union snap=0.1

30

Figure 50: creating a Union for Tiles 39 and 40 with snapping parameters

We can already observe that the records in the attribute table are significantly less.

Figure 51: attribute table of the new union dataset

Using snapping at this stage corrects the minor misalignments identified in the previous step, ensuring that the boundaries
of tile39 and tile40 match seamlessly. This step is essential for creating a continuous layer without gaps or overlaps. Next
we perform all the steps of the misalignment check.

SQL CODE

31

SELECT * FROM tile39_40_union

WHERE a_CODE_00 IS NOT NULL AND b_CODE_00 IS NOT NULL AND a_CODE_00 != b_CODE_00;

Figure 52: selected records with desired criteria after snapping

We can clearly understand that no record was selected where both a CODE 00 and b CODE 00 have values, a CODE 00
and b CODE 00 have different values, and the CODE 00 column is unpopulated for these records. That means that with
snapping tolerance = 0.1 we have no misaligned geometries in the union.

3.2.3 Step 3: Clean the union layer

Now that our dataset is aligned we used v.clean to eliminate duplicate geometries and ensure a single, clean boundary along
the union.

Remove duplicate boundaries

v.clean input=tile39_40_union output=tile39_40_clean tool=rmdupl,break

Removing duplicates and breaking lines at intersections ensures that the merged layer has a single, clean boundary.

3.2.4 Step 4: Dissolve based on CODE 00

In this final step we simplify the dataset by merging contiguous polygons with the same land cover classification (CODE 00).
This removes unnecessary internal boundaries and creates larger, unified regions (v. dissolve was used).
Dissolve polygons with the same CODE 00

v.dissolve input=tile39_40_clean output=tile39_40_dissolved column=CODE_00

32

Figure 53: aligned and dissolved union of tile 39 and tile 40

Figure 54: attribute table of the final aligned and dissolved union of tile 39 and tile 40

NOTE: v.dissolve drops the rest of the columns.

3.3 Exercise 3.3

Export the vector tile39 40 as a shapefile. Open it in QGIS to check that the export has been successful.

How many polygons are there in this datasets?
Export the tile39 40 dissolved layer to a shapefile

33

v.out.ogr input=tile39_40 format=ESRI_Shapefile output=data/corine_data/tile39_40.shp

Load the file in QGIS

Figure 55: the exported shapefile in QGIS environment

Load the file in QGIS

Figure 56: validating shapefiles CRS as QGIS reprojects on the fly

To count how many polygons we have in the dissolved file, we opened the attribute table of the file. We observed that,
instead of having 28 polygons as we expected from the dissolved file from GRASS GIS, we now have 3625 polygons. Which
means, when exporting the dissolved data, it turned the dissolved multiparts back into singleparts.

34

Figure 57: attribute table of the exported dissolved shapefile

When exporting multi-part features from GRASS GIS to formats like Shapefile or GeoPackage, our team noticed that multi-
part geometries are often split into single-part features. This behavior appears to stem from how these formats handle
geometry data, particularly the Shapefile format, which can separate multi-part features into individual single-part polygons
during export to simplify structure.

Even though GeoPackage supports multi-part geometries more robustly, software like QGIS may still interpret these features
as single-part. This is illustrated by the ”Multipart to Singleparts” tool in QGIS, which explicitly converts multi-part features
into single-part ones, highlighting how GIS tools often prioritize single-part handling for ease of processing.

To maintain the original multi-part structure, we found that it’s beneficial to dissolve adjacent polygons using spatial criteria
before export and verify the output directly in QGIS or another GIS software. In cases where single-part features are
sufficient, however, managing the data in a split format can streamline further analysis

3.4 Exercise 3.4

Please write a short comment (max 200 words) about the major challenges that you have faced to solve this task. If you had
more time, would you solve Exercise 3.2 differently?

The biggest challenge of this process was to seamlessly integrate the two tiles, tile39 and tile40, and at the same time ensure
that only adjacent polygons with the same attribute would be merged. First, the process in fact grouped both adjacent and
nonadjacent areas with the same attribute, which is not the requirement of the task-the requirement of the task is to dissolve
only connected polygons. This involved more processes to isolate the non-adjacent features, checking their alignment; hence,
it gave room for complexity and increased the time to be used.

Others included handling the geometry inconsistencies, such as very small gaps, overlaps, and self-intersecting boundaries
that resulted from the merge process. These needed careful attention so as to deliver the integrity of the resultant dataset,
especially upon export.

Given more time, I would try alternative approaches to improve the merging process, in greater detail paying more attention to
those techniques which are mainly based on criteria of spatial adjacency. In this way, one could avoid a lot of post-processing
and would have an easier path toward the results of the task at hand.

35

	Part 1: Solar Analyses
	Exercise 1.1
	Exercise 1.2
	Exercise 1.3
	Exercise 1.4
	Exercise 1.5
	Exercise 1.6
	Exercise 1.7
	Exercise 1.8
	Exercise 1.9
	Exercise 1.10

	Part 2: Network Analyses
	Exercise 2.1
	Exercise 2.2
	Exercise 2.3
	Exercise 2.4
	Exercise 2.5
	Exercise 2.6

	Part 3: Data Integration
	Exercise 3.1
	Exercise 3.2
	Step 1: Perform an initial union without snapping (misalignment check)
	Step 2: Perform union with snapping
	Step 3: Clean the union layer
	Step 4: Dissolve based on CODE_00

	Exercise 3.3
	Exercise 3.4

