
Geo1006 Lab4: PostGIS and valid polygons in the DBMS
Segher ter Braak, Benthe Kock, Ming Chieh Hu

Task 1

Task 2
Table - Building
CREATE TABLE building (id integer, the_geom geometry(POLYGON,0));

CREATE INDEX buildings_geom_idx
ON building
USING GIST (the_geom);

Table - Residential unit
CREATE TABLE residential_unit (id integer, the_geom geometry(POINT,0));

CREATE INDEX residential_geom_idx
ON residential_unit
USING GIST (the_geom);

Task 3
Table - Building
ALTER TABLE building ADD CONSTRAINT building_geom_valid_check

CHECK (ST_IsValid(the_geom));

INSERT INTO building (id, the_geom) VALUES
(1, ST_GeometryFromText('POLYGON((0 0, 0 10, 10 10, 10 0, 0 0))'));

INSERT INTO building (id, the_geom) VALUES
(2, ST_GeometryFromText('POLYGON((20 20, 20 30, 30 30, 30 20, 20 20), (22 22,

22 28, 28 28, 28 22, 22 22))'));
INSERT INTO building (id, the_geom) VALUES

(3, ST_GeometryFromText('POLYGON((40 40, 40 50, 50 50, 50 40, 40 40), (45 40,
45 45, 49 45, 45 40))'));
INSERT INTO building (id, the_geom) VALUES

(4, ST_GeometryFromText('POLYGON((60 60, 60 80, 80 80, 80 60, 60 60), (65 65,
65 75, 75 75, 75 65, 65 65))'));

Polygon cases where the inner-ring touches the outer-ring are rejected. For example:
insert into building (id, the_geom) values

(3, ST_GeometryFromText('POLYGON((40 40, 40 50, 50 50, 50 40, 40 40), (45 40,
45 45, 50 45, 45 40))'));

Gives the following error:

Table - Residential unit
ALTER TABLE residential_unit ADD CONSTRAINT residential_geom_valid_check
CHECK (ST_IsValid(the_geom));

INSERT INTO residential_unit (id, the_geom)
VALUES

(1, ST_GeometryFromText('POINT(2 2)')),
(2, ST_GeometryFromText('POINT(3 3)')),
(3, ST_GeometryFromText('POINT(8 8)')),
(4, ST_GeometryFromText('POINT(22 22)')),
(5, ST_GeometryFromText('POINT(25 25)')),
(6, ST_GeometryFromText('POINT(45 45)')),
(7, ST_GeometryFromText('POINT(50 50)')),
(8, ST_GeometryFromText('POINT(65 65)')),
(9, ST_GeometryFromText('POINT(70 70)')),
(10, ST_GeometryFromText('POINT(30 30)')),
(11, ST_GeometryFromText('POINT(60 60)')),
(12, ST_GeometryFromText('POINT(80 80)'));

Task 4
1) The main difference between (valid) polygon definitions from computational geometry and the

definition from OpenGIS.

Computational geometry: Self intersecting polygons are invalid (or not clear if valid by definition).
OpenGIS: Rings can not cross but may touch tangentially (the same goes for one point to touch)

Computational geometry: Open surfaces are allowed, if the surface has a clear orientation (no
unoriëntable surfaces like a Möbius Band).
OpenGIS: Surfaces are topologically closed

Computational geometry: A polygon may have cut lines, spikes or punctures
OpenGIS: A polygon may not have cut lines, spikes or punctures.

Computational geometry: Exterior boundaries should be CCW and interior boundaries should be
CW.
OpenGIS: Exterior boundaries and interior boundaries may be used regardless of orientation.

Give 2 examples which are valid according to computational geometry and not according to OGC.
Computational geometry disallows: dangling segments, multi-polygon, polygon with holes, ring
touches itself, self-intersection polygons, (partial) overlapping edges. In OGC, non-closed polygons
and spikes are disallowed, but they’re not specified in computational geometry definitions.
Examples:
1. Non-closed polygon: POLYGON((0 0, 10 0, 10 10, 0 10))

2. Polygon with a spike: POLYGON((0 0, 20 0, 20 40, 19.9 20, 0 20, 0 0))

Give one example for which the reverse is true (valid in OGC, not in computational geometry)
Computational geometry disallows polygons with holes. Whereas OpenGIS does not.
Valid in OCG but not in computational geometry:
POLYGON((0 0, 10 0, 10 10, 0 10, 0 0), (2 2, 2 8, 8 8, 8 2, 2 2))

2) Describe at least 5 aspects which are relevant when deciding if a polygon is valid or not according
to the definition of van Oosterom, Quak and Tijssen.

● The polygon must not have any self-intersections or overlapping edges.
● All boundary rings must be properly closed; all nodes must be connected to two line

segments.
● Rings are not allowed to cross each other. They may however touch at single points or

overlap partially, as long as the overall interior forms one connected area.
● Outer boundaries must be oriented counterclockwise and inner boundaries must be oriented

clockwise.
● A small numerical tolerance is used to handle small differences in coordinate values to

compensate for computational limitations, ensuring practical validity.

3) What is the difference between a valid and a clean polygon? Give two examples of polygons
which are valid (according to vOQT), but not clean.

a) Polygon example 29, it resembles example 12 or example 1 after cleaning.

➡
b) Polygon example 32, it resembles example 4 after cleaning.

➡

4) Why is the concept of robustness of a polygon useful (e.g. in an application)?
Robustness is the ability of a polygon to remain valid under small changes in its coordinates, ensuring
resistance to become invalid for example due to computational or precision issues. This is important
for application because high robustness provides confidence that polygons will remain valid and
reliable during operations like geometric computation, or data transfer.

5) Compute the robustness value of the following polygons:

a. (0 0, 4 0, 2 4, 0 0) b. (0 0, 1 1, 1 2, 8 2, 8 3, 0 2, 0 0) c. (0 0, 2 2, 0 2, 2 0, 0 0)

d. (0 0, 8 0, 8 8, 0 8, 0 0) (3 5, 5 5, 4 7, 3 5) e. (0 0, 8 0, 8 8, 4 8, 0 8, 0 0) (3 5, 5 5, 4 8, 3 5)

Query - Calculate robustness using ST_MinimumClearance()
-- Insertion is omitted here
create or replace view valid_polygon as
select id, ST_IsValid(pgn), ST_IsValidReason(pgn), ST_MinimumClearance(pgn)
from test_polygon;

select id, ST_IsValid, ST_IsValidReason, (
case

when ST_IsValid = false then 0
else ST_MinimumClearance

end
)as robustness
from valid_polygon vp;

Query - Result

6) Test the validation capabilities of the current version of PostGIS by loading the examples from the
paper ‘About Invalid, Valid and Clean Polygons’ and comparing the results to the results in 2004
(in the paper).

Results

Comparing the results - Polygons marked as true in the ST_IsValid column align with the results of
PostGIS in the paper, indicating consistency in handling valid geometries. For the polygon with ID 10,
we weren’t able to create it and an error came up, since the polygon was not closed. This is in line
with the results from the paper which also marked it as invalid. All the other invalid cases in our
results differ from the results from the paper, since in the paper they were considered as valid. This
indicates that the current PostGIS is more selective in (in)validity.

7) Try to create your own ‘critical’ polygons (if possible different types than in the paper): one that
you think should be valid and one that you think that should be invalid. Load these two polygons
in PostGIS and report the result.

insert into own_polygon values ('1', ST_GeomFromText('POLYGON((33300
19200, 19200 30000, 8300 15000, 3800 15001, 20000 4200, 33300 19200))',0));

Valid

insert into own_polygon values ('2', ST_GeomFromText('POLYGON((33300
19200, 19200 30000, 8300 15000, 8300 15001, 8300 15002, 20000 4200, 33300
19200))',0));

Invalid

These polygons are both the same shape but one has two consecutive points with a small distance to
each other on the same line, the latter is the same but with three points of the same distance on a
line. It is curious that in the first polygon the small difference is accepted, but in the other not. This
has probably something to do with the precision.

8) Give a definition of what you would call a valid polyhedron (i.e. a volume in 3D space with flat
faces as boundaries) in a style similar to the valid 2D polygon definition by vOQT

a) A polyhedron should have exactly 4 faces and 4 nodes in 3D.

b) It’s a volume in 3D, so no nodes are allowed to touch any face or edge except of which it’s
connected to.

c) All nodes are at least connected to 3 edges and 3 unique points.
d) It’s described by 4 polygons with exactly 3 points in 3D, example usage:

ST_GeomFromText('POLYHEDRON((0 0 0, 1 0 0, 0 1 0), (1 0 0, 2 0 0, 1 1
0), (0 1 0, 1 1 0, 0 2 0), (0 0 0, 0 1 0, 0 0 1))')

