
Group 6: Luc Jonker, 4836111, Ming-Chieh Hu, 6186416, Sophie Lipskaya 6306055

1. Describe (and illustrate with drawings) the ‘insert’ algorithm of the R-tree. Assume that
the objects D, F, G, H, J, K, L, M and N already in the R-tree and that subsequently (and
in the given order) the following objects are added in this order 4, 3, 2 and 1 to the
R-tree (show both the scene with the rectangle groupings and the R-tree after every
step).

To begin:

Insert item 4:

Insert item 3:



Insert item 2:

Insert item 1:



2. Load some cadastral data (planar partition) in PostGIS with script from topomap_v3.sql:
C:\Program Files\PostgreSQL\9.0\bin>psql -f \peter\doc\geoDBMS\topomap_v3.sql -U
postgres test Note: the script also defin



3. es the tables, before actual data loading starts (see last page). Note 2: de not use
pgadmin to load the data, but the command line tool psql (as shown above)

4. What are functions st_buildarea and st_collect doing, check the PostGIS manual.
Describe the expected input and explain what will be the output

ST_BuildArea:
This function can take several separate line segments / polygons and merge them into 1
(or multiple) areal polygons. The merge process includes detecting and making inner
rings into holes. Use ST_Collect to form a collection if needed.

Input: LineString, MultiLineString, Polygon, MultiPolygon or GeometryCollection
Output: Either a Polygon or a MultiPolygon, NULL if no polygon is formed

ST_Collect:
Collects distinct geometries and collects them into one geometry collection.
Input: Accepts two, an array of, or an aggregate rowset function of geometries.
Output: Returns either a Multi* geometry or a GeometryCollection depending on if the
input geometries are of the same or different types respectively.

5. Count the number of nodes, edges, and faces

Nodes:

Edges:

Faces:



6. Do some simple SQL statistics as specified below:
a. find smallest polygon, largest polygon, average polygon area, total polygon area.
b. similar for longest edge, shortest edge, average edge length, total edge length
c. count the edges longer than 1000m, count the polygons larger 10000m2 .

A:
Smallest:
SELECT face_id, ST_Area(geometry) as area, geometry
FROM kadnl050k_face_geometry
ORDER BY area asc
LIMIT 1;

Largest:
SELECT face_id, ST_Area(geometry) as area, geometry
FROM kadnl050k_face_geometry
ORDER BY area desc
LIMIT 1;

Average:
SELECT AVG(ST_Area(geometry)) as area
FROM kadnl050k_face_geometry;

Total:
SELECT SUM(ST_Area(geometry)) as area
FROM kadnl050k_face_geometry;

B:
Longest:
SELECT edge_id, ST_Length(geometry) as len, geometry
FROM kadnl050k_edge
ORDER BY len DESC
LIMIT 1;

Shortest:



SELECT edge_id, ST_Length(geometry) as len, geometry
FROM kadnl050k_edge
ORDER BY len asc
LIMIT 1;

Average:
SELECT AVG(ST_Length(geometry)) as len
FROM kadnl050k_edge;

Total:
SELECT SUM(ST_Length(geometry)) as len
FROM kadnl050k_edge;

C:
Edges longer than 1000m:
SELECT COUNT(len)
FROM (SELECT ST_Length(geometry) as len
FROM kadnl050k_edge
WHERE ST_Length(geometry) > 1000)

Polygons larger than 10000m2:
SELECT COUNT(area)
FROM (SELECT ST_Area(geometry) as area
FROM kadnl050k_face_geometry
WHERE ST_Area(geometry) > 10000)

7. Do two spatial joins (without spatial index):



a. of edge table with itself to check if there are crossing edges (and in order not to
wait too long add condition that one of the crossing edges must at least be
500m); use: ST_Crosses

SELECT kke.geometry, kke2.geometry
FROM kadnl050k_edge kke

JOIN kadnl050k_edge kke2
ON ST_Crosses(kke.geometry, kke2.geometry)

WHERE ST_Length(kke.geometry) > 500;

We waited over 45 min and still didn’t get a result, so we moved on.

b. of face table with polygon table to find the polygon pip (polygon reference point)
in different face bbox (add condition: area of bbox must be at least 100m2 ); use
ST_Contains Report how long these queries take, use in psql the \timing option
(probably better to do something else in between).

SELECT kkf.face_id, kkf.mbr_geometry as mbr, kkf2.face_id, kkf2.pip_geometry
FROM kadnl050k_face as kkf, kadnl050k_face_geometry as kkf2
WHERE kkf.face_id != kkf2.face_id
AND ST_Contains(kkf.mbr_geometry, kkf2.pip_geometry)



AND ST_Area(kkf.mbr_geometry) > 100;

Query took approx 5 minutes 24 seconds to produce output

8. Create spatial index (in PostgGIS this is gist index, r-tree like structure) on the relevant
tables, repeat queries (especially the spatial joins).

Query 1
CREATE INDEX kadnl050k_edge_geom_idx ON kadnl050k_edge USING GIST(geometry)

SELECT e1.edge_id, e2.edge_id
FROM kadnl050k_edge as e1, kadnl050k_edge as e2
WHERE ST_Crosses(e1.geometry, e1.geometry)
AND (ST_Length(e1.geometry) > 500 OR ST_Length(e2.geometry) > 500);
Note, generates empty output (Query complete 00:00:01.078)



Query 2
CREATE INDEX kadnl050k_face_mbr_idx ON kadnl050k_face USING GIST(mbr_geometry);
CREATE INDEX kadnl050k_face_pip_idx ON kadnl050k_face_geometry USING
GIST(pip_geometry);

SELECT kkf.face_id, kkf.mbr_geometry as mbr, kkf2.face_id, kkf2.pip_geometry
FROM kadnl050k_face as kkf, kadnl050k_face_geometry as kkf2
WHERE kkf.face_id != kkf2.face_id
AND ST_Contains(kkf.mbr_geometry, kkf2.pip_geometry)
AND ST_Area(kkf.mbr_geometry) > 100;



Query took 1.013 seconds

9. If not already done so, install Quantum GIS (qgis) standalone installer after download
from http://qgis.org/en/site/forusers/download.html

Done :)

10. Make a connection to the (test) database and add PostGIS table/layer after set-up
connection to database.

11. Display the edges longer than 1000m and the polygons larger than 10000m2

Edges longer than 1000m





Polygons larger than 10000m2


