
Assignment-6: Routing, GEO-1006

Ming-Chieh Hu, Carmem E. F. Aires, Benthe Kock

November 2024

Project Description

This report was made by:

1. Ming-Chieh Hu, student number: 6186416

2. Carmem E. F. Aires, student number: 4325893

3. Benthe Kock, student number: 6104819

Contents

6.A Why Routing Inside The Database? 2

6.B Getting Started 3
6.B.1 First routing functionality in your PostgreSQL database . 3
6.B.2 Load some sample data . 3
6.B.3 Check if graph is correct and next do some routing . 4
6.B.4 Add some additional edges and nodes to the network . 5
6.B.5 Visualize in QGIS the network . 7

6.C Routing In Delft 8
6.C.1 Start with new database, load data from OSM . 8
6.C.2 Visualize in QGIS . 8
6.C.3 Routing in Delft . 9

6.D Indoor Routing In BK 11
6.D.1 Start with new database for 3D indoor routing . 11
6.D.2 Load data from our BK building . 11
6.D.3 View data in QGIS . 14
6.D.4 Use the 3D webviewer and do some interactive routing . 17

1

6.A Why Routing Inside The Database?

Give reasons in favor and against doing routing inside the database.

Reasons in Favor of Routing Inside the Database:

• Data Accessibility: Multiple users can operate at the same time, no need to transfer large datasets between
systems.

• Consistency: Keeps calculations in sync with the source data.

• Performance: Databases can leverage powerful indexing and optimization techniques.

• Data Integration: Easily combine routing with other logic stored in the same database.

Reasons Against Routing Inside the Database:

• Complex Setup: It can be tricky to set up the necessary schema and extensions.

• Database Load: Heavy routing calculations can slow down other database operations.

• Scalability: For very large datasets, databases might not scale well with complex graph computations.

2

6.B Getting Started

6.B.1 First routing functionality in your PostgreSQL database

6.B.2 Load some sample data

After loading and creating explicit line geometry, check the minimum, maximum and average length of the geom
in the edge table.

1 select ST_length(et.the_geom) as len

2 from edge_table et

3 order by len desc;

3

1 select max(ST_length(et.the_geom)), min(ST_length(et.the_geom)), avg(ST_length(et.the_geom))

2 from edge_table et;

max = 1.7, min = 1.0, avg = 1.066...

6.B.3 Check if graph is correct and next do some routing

Double check and analyze the network

1 select pgr_analyzegraph('edge_table', 0.001);

2 select pgr_dijkstra('SELECT * FROM edge_table', 2, 11);

Routing from node 2 to 11

1 SELECT * FROM pgr_dijkstra(

2 'SELECT id, source, target, cost, reverse_cost FROM edge_table',2, 11

3);

Total route cost = 3

Routing from node 11 to 2

1 select pgr_dijkstra('SELECT * FROM edge_table', 11,2);

4

1 SELECT * FROM pgr_dijkstra(

2 'SELECT id, source, target, cost, reverse_cost FROM edge_table',11, 2

3);

Total route cost = 5

Routing from node 1 to 14

1 select pgr_dijkstra('SELECT * FROM edge_table', 1,14);

Total route cost = Not connected

Routing from node 1 to 17

1 select pgr_dijkstra('SELECT * FROM edge_table', 1,17);

Total route cost = Not connected

6.B.4 Add some additional edges and nodes to the network

Insert new edges and nodes

1 INSERT INTO edge_table (category_id, reverse_category_id, cost, reverse_cost, capacity,

reverse_capacity, x1, y1, x2, y2)↪→

2 VALUES

3 (3, 1, 1, 1, 80, 130, 2,3, 1.999999999999, 3.5),

4 (3, 1, 1, 1, 80, 130, 2,4, 3.5, 4);

5

6 INSERT INTO edge_table (category_id, reverse_category_id, cost, reverse_cost, capacity,

reverse_capacity, x1, y1, x2, y2)↪→

7 VALUES

8 (3, 1, 1, 1, 80, 130, 2, 0, 0, 0),

9 (3, 1, 1, 1, 80, 130, 0, 1, 0, 0),

10 (3, 1, 1, 1, 80, 130, 0, 1, 0, 2);

5

Routing from node 1 to 14

1 SELECT * FROM pgr_dijkstra(

2 'SELECT id, source, target, cost, reverse_cost FROM edge_table', 1, 14

3);

Total route cost = 5

Routing from node 1 to 17

1 SELECT * FROM pgr_dijkstra(

2 'SELECT id, source, target, cost, reverse_cost FROM edge_table', 1, 17

3);

Total route cost = 5

Routing from node 19 to 16

1 SELECT * FROM pgr_dijkstra(

2 'SELECT id, source, target, cost, reverse_cost FROM edge_table', 19, 16

3);

Total route cost = 7

6

6.B.5 Visualize in QGIS the network

1 CREATE TABLE computed_path AS

2 SELECT * FROM pgr_dijkstra(

3 'SELECT id, source, target, cost, reverse_cost FROM edge_table',
4 1,

5 14

6);

7

8 CREATE VIEW path_geom AS

9 SELECT

10 edge_table.id,

11 edge_table.the_geom

12 FROM

13 edge_table

14 INNER JOIN

15 computed_path ON edge_table.id = computed_path.edge;

7

6.C Routing In Delft

6.C.1 Start with new database, load data from OSM

6.C.2 Visualize in QGIS

1 select *

2 from ways_vertices_pgr;

8

6.C.3 Routing in Delft

Dijkstra path query

1 select *

2 from pgr_dijkstra(

3 'select gid as id, source, target, cost, reverse_cost from ways',
4 6667,

5 6742,

6 true

7);

9

Visualzation in QGIS

1 create table route as (

2 with dijkstra as (

3 select * from

pgr_dijkstra('select gid as id, source, target, cost, reverse_cost from ways', 6667,

6742, true)

↪→

↪→

4)

5 select d.*, w.gid, w.the_geom

6 from ways w join dijkstra d on d.edge = w.gid

7);

Starting and ending node

10

6.D Indoor Routing In BK

6.D.1 Start with new database for 3D indoor routing

1 create extension postgis;

2 create extension pgrouting;

6.D.2 Load data from our BK building

11

Make a second view for another user (one of the teachers)

1 -- Create node and edge view for teacher Elijah

2 create view node_vw_2 as select node.id, node.geom from node, rights, party

3 where party.name= 'Elijah' and rights.pid=party.pid and rights.type= 'access' and

rights.nid=node.id;↪→

4

5 create view edge_vw_2 as select edge.* from edge, node_vw_2 nf, node_vw_2 nt

6 where nf.id=edge.source and nt.id=edge.target;

Find a source and destination pair for which the route of the student is different than the route
of the teacher.

1 -- Which student's route differs from the teacher's?
2 -- Too slow to find one difference without using loop and function

3 -- Use pgr_dijkstraCost() here to reduce computation

4 -- Definition of view possible_pairs is below this code block

5

6 create or replace function find_diff()

7 returns text as $$

8 declare

9 pair record;

10 student_cost numeric;

11 teacher_cost numeric;

12 begin

13 -- Loop through each pair in the possible_pairs view

14 for pair in

15 select pair_from, pair_to from possible_pairs

16 loop

17 -- Get the Dijkstra cost for the student

18 select agg_cost into student_cost

19 from pgr_dijkstraCost(

20 'select id, source, target, cost from edge_vw',
21 (select source from edge_vw where fromnode = pair.pair_from limit 1),

22 (select target from edge_vw where tonode = pair.pair_to limit 1),

23 false

24);

25

26 -- Get the Dijkstra cost for the teacher

27 select agg_cost into teacher_cost

28 from pgr_dijkstraCost(

29 'select id, source, target, cost from edge_vw_2',
30 (select source from edge_vw_2 where fromnode = pair.pair_from limit 1),

31 (select target from edge_vw_2 where tonode = pair.pair_to limit 1),

32 false

33);

34

35 -- Check if the costs differ

36 if student_cost <> teacher_cost then

37 return format(

38 'Difference found: Pair from %s to %s, Student cost = %s, Teacher cost = %s',
39 pair.pair_from, pair.pair_to, student_cost, teacher_cost

40);

41 end if;

42 end loop;

43

44 -- If no differences are found

45 return 'No differences found.';
46 end;

47 $$ language plpgsql;

12

View possible pairs definition

1 -- Generate all possible pairs of fromnode and tonode

2 create or replace view possible_pairs as (

3 select

4 a.fromnode as pair_from,

5 b.fromnode as pair_to

6 from edge_vw a, edge_vw b

7 where a.fromnode <> b.fromnode and a.fromnode not like 'D%' and b.fromnode not like 'D%'
8);

Run find diff() function

1 -- Now it's easy, the loop stops at first result so it's way faster:)

2 select find_diff();

Create view for route

1 -- Liam's route (student)

2 create or replace view route_vw as

3 select distinct X.seq, Y.roomname, Z.geom, X.Path_seq, X.edge, X.cost, X.agg_cost

4 from

5 pgr_dijkstra(

6 'select id, source, target, cost from edge_vw',
7 (select source from edge_vw where fromnode ='BG.West.859' limit 1),

8 (select target from edge_vw where tonode ='BG.West.866' limit 1),

9 false

10) X

11 join node as Y on X.node = Y.id

12 join edge as Z on X.edge = Z.id

13 order by seq;

13

1 -- Elijah's route (teacher)

2 create or replace view route_vw_2 as

3 select distinct X.seq, Y.roomname, Z.geom, X.Path_seq, X.edge, X.cost, X.agg_cost

4 from

5 pgr_dijkstra(

6 'select id, source, target, cost from edge_vw_2',
7 (select source from edge_vw_2 where fromnode ='BG.West.859' limit 1),

8 (select target from edge_vw_2 where tonode ='BG.West.866' limit 1),

9 false

10) X

11 join node as Y on X.node = Y.id

12 join edge as Z on X.edge = Z.id

13 order by seq;

6.D.3 View data in QGIS

Visualize the BK building network (nodes, edges) in QGIS, together with the paths of the two
building users (as mentioned above).

Liam’s route (Student):

14

Elijah’s route (Teacher):

Define a route from the building entry (BG.Mid.803) to the Geolab (02.Oost.600) for one of the
students.

1 create view node_vw3 as select node.id, node.geom from node, rights, party

2 where party.name= 'Noah' and rights.pid=party.pid and rights.type= 'access' and

rights.nid=node.id;↪→

3

4 create view edge_vw3 as select edge.* from edge, node_vw3 nf, node_vw3 nt

5 where nf.id=edge.source and nt.id=edge.target;

6

7 create view route_vw3 as

8 SELECT distinct X.seq, Y.roomname, Z.geom, X.Path_seq, X.edge, X.cost, X.agg_cost

9 FROM

10 pgr_dijkstra(

11 'select id,source, target, cost from edge_vw3',
12 (select source from edge_vw3 where fromnode ='BG.Mid.803' limit 1),

13 (select source from edge_vw3 where tonode ='02.Oost.600' limit 1),

14 FALSE

15) X JOIN

16 node AS Y ON X.node = Y.id JOIN

17 edge AS Z ON X.edge = Z.id

18 ORDER BY seq;

15

Route from entrance to Geolab for a student:

16

6.D.4 Use the 3D webviewer and do some interactive routing

Rooms where the students have access/are allowed.

From the entrance (BG.Mid.803) to Geolab (02.Oost.600) for a student.

17

Start BG.Mid.080 to Geolab (02.Oost.600) for a student.
No result:

Start BG.Mid.080 to Geolab (02.Oost.600) for a staff member.

18

	Why Routing Inside The Database?
	Getting Started
	First routing functionality in your PostgreSQL database
	Load some sample data
	Check if graph is correct and next do some routing
	Add some additional edges and nodes to the network
	Visualize in QGIS the network

	Routing In Delft
	Start with new database, load data from OSM
	Visualize in QGIS
	Routing in Delft

	Indoor Routing In BK
	Start with new database for 3D indoor routing
	Load data from our BK building
	View data in QGIS
	Use the 3D webviewer and do some interactive routing

