Assignment-7: Raster in DBMS, GEO-1006

Ming-Chieh Hu, Carmem E. F. Aires, Benthe Kock

January 2025

Project Description

This report was made by:

- 1. Ming-Chieh Hu, student number: 6186416
- 2. Carmem E. F. Aires, student number: 4325893
- 3. Benthe Kock, student number: 6104819

Contents

1	Check if raster support is available in the database	2
	1a Test extension functionality	2
	1b Raster functions	2
	1b.1 ST_Width() and ST_NumBands()	2
	1b.2 Other major function categories	2
2	Load raster data in the database	3
	2a Use gdalinfo to retrieve the metadata	3
	2b Completeness of CRS information	4
	2c Load the images in the PostGIS database	5
	2d Comparing the file size	5
	2e Why is it advisable to specify tiling, and how is this related to indexing?	6
	2f Why or why not it would be useful to include one or more 'overviews' (-l option) of the raster.	6
3	Retrieve information from, query and manipulate raster data in the database	7
	3a	$\overline{7}$
	3b	7
	3c	7
	3d	8
	3e	8
	3f	10
4	Visualize raster data from the database in QGIS frontend	12

1 Check if raster support is available in the database

1a Test extension functionality

We cannot access raster functions directly.

According to the post, postGIS excluded the raster types and functions from the main extension as of version 3.x; a separate CREATE EXTENSION postgis_raster is then necessary to get raster support.

1b Raster functions

The 'test_raster.sql' script uses some raster functions, like ST_Width() and ST_NumBands() to test if the raster module works correctly. What type of raster functions are these, and what are the other, major, function categories for raster available in PostGIS?

1b.1 ST_Width() and ST_NumBands()

These 2 functions are both type of **Raster Accessors** according to *postgis.net*. They work the same way as "getter" in other programming language, that is, to get attributes (metadata) from a raster object. Below are their function descriptions:

- ST_Width(): Returns the width of the raster in pixels.
- ST_NumBands(): Returns the number of bands in the raster object.

1b.2 Other major function categories

The full list of the categories according to *postgis.net* are:

- Raster Management
- Raster Constructors
- Raster Accessors
- Raster Band Accessors
- Raster Pixel Accessors and Setters
- Raster Editors
- Raster Band Editors
- Raster Band Statistics and Analytics
- Raster Inputs

- Raster Outputs
- Raster Processing: Map Algebra
- Built-in Map Algebra Callback Functions
- Raster Processing: DEM (Elevation)
- Raster Processing: Raster to Geometry
- Raster Operators
- Raster and Raster Band Spatial Relationships

In my personal perspective, they can also be divided into 6 major categories:

- Data Setters (constructor)
- Data Getters (accessor)
- Data Conversion Functions (converts object types)
- Data Processing Functions (calculations and processing)
- Data Comparison Functions (Raster Operators)
- Data I/O Functions (save file as a specific format)

2 Load raster data in the database

2a Use gdalinfo to retrieve the metadata

Download the sample images '93000_436000.tif' and '93000_436500.tif' from Brightspace to your local disk. The images are in the GeoTIFF format (Tagged Image File Format) with in some of the tags geo-reference information included. What is the spatial metadata of these image? Use 'gdalinfo' to determine this.

93000_436000.tif

1 gdalinfo ./93000_436000.tif

```
GE0-1006/Assignments/07]$ gdalinfo ./93000_436000.tif
Toybocuments, 100/860-1000
Driver: GTiff/GeoTIFF
Files: ./93000_436000.tif
Size is 10000, 5000
Coordinate System is:
ENGCRS["unnamed",
EDATUM["Unknown engineering datum"],
          EDAIUM["Unknown engineering datum"

CS[Cartesian,2],

AXIS["(E)",east,

ORDER[1],

LENGTHUNIT["unknown",1]],

AXIS["(N)",north,

ORDER[2],

LENGTHUNIT["unknown",1]]]

a avis to CPS avis manning: 1 2
Data axis to CRS axis mapping: 1,2
Origin = (92999.999999999796273,436500.000000000882077)
Pixel Size = (0.10000000000000,-0.10000000000000)
  letadata:
TIFFTAG_SOFTWARE=Inpho GmbH
     TIFFTAG_XRESOLUTION=1
TIFFTAG_YRESOLUTION=1
IIFFIAG_RESOLUTION=I
TIFFIAG_RESOLUTIONNIT=1 (unitless)
AREA_OR_POINT=Area
Image Structure Metadata:
INTERLEAVE=PIXEL
Corner Coordinates:
             er Coordinates:

r Left ( 93000.000, 436500.000)

r Left ( 93000.000, 436500.000)

r Right ( 94000.000, 436500.000)

er ( 94000.000, 436500.000)

er ( 93500.000, 436250.000)

1 Block=512x512 Type=Byte, ColorInterp=Gree

2 Block=512x512 Type=Byte, ColorInterp=Gree

2 Block=512x512 Type=Byte, ColorInterp=Free

2 Block=512x512 Type=Byte, ColorInterp=Free
Upper Left
Lower Left
Upper Right
Lower Right
 Center
                                                                                                                                     Green
                   Block=512x512
                                                                       e=Bvte.
                                                                                               ColorInterp=Blue
```

93000_436500.tif

```
1 gdalinfo ./93000_436500.tif
```

<pre>[~/Documents/TUD/GE0-1006/Assignments/07]\$ gdalinfo ./93000_436500.tif</pre>									
Driver: GTiff/GeoTIFF									
Files: ./93000_436500.tif									
Size is 10000, 5000									
Coordinate System is:									
ENGCRS["unnamed",									
EDATUM["Unknown engineering datum"],									
CS[Cartesian,2],									
AXIS["(E)",east,									
ORDER[1],									
LENGTHUNIT["unknown",1]],									
AXIS["(N)", north,									
ORDER [2],									
LENGTHUNIT["unknown",1]]]									
Data axis to CRS axis mapping: 1,2									
Origin = (92999.9999999999796273,437000.000000000582077)									
Pixel Size = (0.10000000000000,-0.10000000000000)									
Metadata:									
TIFFTAG_SOFTWARE=Inpho GmbH									
TIFFTAG_XRES0LUTI0N=1									
TIFFTAG_YRES0LUTI0N=1									
TIFFTAG_RESOLUTIONUNIT=1 (unitless)									
AREA_OR_POINT=Area									
Image Structure Metadata:									
INTERLEAVE=PIXEL									
Corner Coordinates:									
Upper Left (93000.000, 437000.000)									
Lower Left (93000.000, 436500.000)									
Upper Right (94000.000, 437000.000)									
Lower Right (94000.000, 436500.000)									
Center (93500.000, 436750.000)									
Band 1 Block=512x512 Type=Byte, ColorInterp=Red									
Band 2 Block=512x512 Type=Byte, ColorInterp=Green									
Pand 2 Plack-512x512 Type-Pyte ColerIntern-Plue									

According to the displayed information, we're able to get a grasp on these 2 images:

- The size for both the images are 10000 by 5000 (width, height).
- They both have 3 bands (RGB)
- If we tile both images, 93000_436500.tif will be in the north of 93000_436000.tif

2b Completeness of CRS information

Is the spatial reference information of the images complete? (the coordinates in the GeoTIFF files refer to the Dutch national grid, Spatial Reference ID = 28992)

CRS Information from gdalinfo

```
1 Coordinate System is:
2 ENGCRS ["unnamed",
3
       EDATUM["Unknown engineering datum"],
       CS[Cartesian,2],
^{4}
           AXIS["(E)",east,
5
                ORDER[1],
6
                LENGTHUNIT["unknown",1]],
\overline{7}
           AXIS["(N)", north,
8
                ORDER [2],
9
                LENGTHUNIT["unknown",1]]]
10
11 Data axis to CRS axis mapping: 1,2
12 Origin = (92999.9999999999796273,437000.00000000582077)
```

The CRS metedata for these 2 images are not very clear, specifically:

Coordinate System

- ENGCRS ["unnamed"]: Indicates that the dataset uses an undefined CRS or non-georeferenced system.
- EDATUM["Unknown engineering datum"]: The datum is not defined.

• CS[Cartesian,2]: Specifies a 2D Cartesian coordinate system with two axes (East and North).

Axes

- AXIS["(E)",east]: First axis is labeled East.
- AXIS["(N)", north]: Second axis is labeled North.
- Both axes have LENGTHUNIT["unknown",1], meaning the unit of measurement for the coordinates is undefined. It could be meters, feet, or any other unit.

Data Axis to CRS Axis Mapping

• 1,2: Confirms that the dataset's data axis aligns directly with the CRS axis (East $\rightarrow 1$, North $\rightarrow 2$).

2c Load the images in the PostGIS database

Using raster2pgsql to load raster data involves a 2-step procedure. In the first step raster2pgsql analyzes the input images and processes the options specified. This results in a file with SQL commands which have to be executed in a second step to actually load the raster data in the database. For this to work properly you have to run the raster2pgsql command from the operating system "command line".

Step 1

1 raster2pgsql -C -s 28992 -t 500x500 -I -Y ./*.tif rotterdam > ./load2.sql

Step 2

2d Comparing the file size

After loading the images check and report on the size of the data: how does the size of the 'raw' images compare to the size of the same data stored in the database? Can you explain the differences, if there are any?

File on the disk

The file on the disk is approximately 314 MB (157 megabytes each).

File in the DB

1	<pre>select pg_size_pretty(pg_table_size('rotterdam'));</pre>	
<u> </u>		
1	17 MB	

The file in the database is approximately 217 MB, with 400 rows (because we use tile size of 500x500) in total.

Comparing differences

The main differences are in:

- Tiling Improves Compression Efficiency:
 - Splitting the raster into 500x500 tiles enhances compression by exploiting repetitive patterns within smaller, localized areas.
 - Uniform terrain areas particularly benefit from this approach.
- Efficient Storage of Numeric Data:
 - PostgreSQL uses a structured and compact format for raster storage.
 - Redundant parts of the TIFF file structure (e.g. headers) are optimized or removed during import.

2e Why is it advisable to specify tiling, and how is this related to indexing?

Tiling divides the data into chunks, which is good for data performance. This approach is particularly useful for large datasets. When loading the data, only the visible tiles are retrieved. Similarly, when querying, only the number of tiles required will be retrieved, depending on the region required. Indexing is required to retrieve the data. Each tile, when created, manages a number of x and y pixels that are stored in each BLOB field.

2f Why or why not it would be useful to include one or more 'overviews' (-l option) of the raster.

An overview is a low-resolution representation of the core tables of a raster. This allows quick map zoom-in andout. Computations can also be performed on them in less time. However, their use depends on the application, as each pixel generalises a larger area, they will give less accurate results than the same calculation performed in their higher resolution parents.

3 Retrieve information from, query and manipulate raster data in the database

3a

1	<pre>select ST_Width(rast),</pre>	<pre>ST_Height(rast),</pre>	ST_SRID(rast),	<pre>ST_NumBands(rast),</pre>	<pre>ST_GeoReference(rast)</pre>
2	<pre>from rast_table rt;</pre>				

	123 st_width 🔹	123 st_height 🔹	123 st_srid 🔹 🔻	123 st_numbands 🔻	RBC st_georeference
1	500	500	28,992	3	0.1000000000\0.00000000000000\0.00000000
2	500	500	28,992	3	0.100000000\l0.00000000\l0.00000000\l-0.100000000\l93049.999999998\l436500.000000010\l
3	500	500	28,992	3	0.1000000000\0.0000000000\0.000000000\-0.100000000\93099.9999999998\436500.000000010\
4	500	500	28,992	3	0.1000000000\l0.000000000\l0.00000000\l-0.100000000\l93149.999999998\l436500.000000010\l
5	500	500	28,992	3	0.1000000000\0.0000000000\0.000000000\-0.100000000\93199.999999998\436500.000000010
6	500	500	28,992	3	0.100000000\{0.00000000\{0.00000000\}0.00000000\}-0.100000000\\93249.9999999998\\436500.000000010\\
7	500	500	28,992	3	0.1000000000\0.000000000\0.000000000\-0.100000000\93299.999999998\436500.000000010\
8	500	500	28,992	3	0.1000000000\0.000000000\0.000000000\-0.100000000\93349.9999999998\436500.000000010\
9	500	500	28,992	3	0.1000000000\0.000000000\0.000000000\-0.100000000\93399.999999998\436500.000000010\
10	500	500	28,992	3	0.1000000000\0.000000000\0.000000000\-0.100000000\93449.9999999998\436500.000000010\
11	500	500	28,992	3	0.1000000000\0.000000000\0.000000000\-0.100000000\93499.9999999998\436500.000000010\
12	500	500	28,992	3	0.1000000000\0.000000000\0.000000000\-0.100000000\93549.999999998\436500.000000010\
13	500	500	28,992	3	0.1000000000\0.000000000\0.000000000\-0.100000000\93599.999999998\436500.000000010\
14	500	500	28,992	3	0.100000000\l0.00000000\l0.00000000\l-0.100000000\l93649.9999999998\l436500.000000010\l
15	500	500	28,992	3	0.1000000001\0.0000000001\0.0000000001\-0.1000000001\93699.9999999998\436500.0000000010\
16	500	500	28,992	3	0.1000000001\0.0000000001\0.0000000001\-0.1000000001\93749.999999998\436500.000000010\
17	500	500	28,992	3	0.1000000000\ 0.000000000\ 0.000000000\ -0.100000000\ 93799.999999998\ 436500.000000010\
18	500	500	28,992	3	0.100000000\{0.00000000\{0.00000000\}0.00000000\}-0.100000000\}93849.9999999998\{436500.0000000010\}
19	500	500	28,992	3	0.1000000000\0.0000000000\0.000000000\-0.100000000\93899.9999999998\436500.000000010\
20	500	500	28,992	3	0.100000000\l0.00000000\l0.00000000\l0.0000000\l-0.100000000\l93949.999999999998\l436500.000000010\l

3b

	select rid, ST_Value(rast, 1, ST_SetSRID(ST_Point(93780, 436208), 28992)) as band1,									
	→ ST_Value(rast, 2, ST_SetSRID(ST_Point(93780, 436208), 28992)) as band2, ST_Value(rast, 3,									
	→ ST_SetSRID(ST_Point(93780, 436208), 28992))as band3									
:	from rast_table rt									
:	where ST Intersects(rast, ST SetSRID(ST Point(93780, 436208), 28992));									
	La rd V La band2 V La band2 V La band3 V									
1	<u>116</u> 130 124 105									

3c

```
1 -- This doesn't save the value
2 select ST_SetValue(rast, 1, ST_SetSRID(ST_Point(93780, 436208), 28992), 101)
3 from rast_table rt
4 where ST_Intersects(rast, ST_SetSRID(ST_Point(93780, 436208), 28992));
5
6 -- This one will save the value
7 UPDATE rast_table
8 SET rast = ST_SetValue(
9
       ST_SetValue(
           ST_SetValue(rast, 1, ST_SetSRID(ST_Point(93780, 436208), 28992), 101),-- Band 1
10
                                                                                 -- Band 2
           2, ST_SetSRID(ST_Point(93780, 436208), 28992), 102),
11
       3, ST_SetSRID(ST_Point(93780, 436208), 28992), 103)
                                                                                 -- Band 3
^{12}
13 WHERE ST_Intersects(rast, ST_SetSRID(ST_Point(93780, 436208), 28992));
```

	127 rid	•	123 band1	•	123 band2	-	123 band3	•
1	11	6	10	1		102		103

```
1 CREATE TABLE clipped_raster_3d AS
2 select ST_Clip(rast, ST_MakeEnvelope(93750,436186, 93778,436211, 28992))
3 from rast_table rt
4 where ST_Intersects(rast, ST_MakeEnvelope(93750,436186, 93778,436211, 28992));
```


Figure 14: 3d - Clipped raster

3e

- 1 CREATE TABLE clipped_raster_3e AS
- 2 SELECT ST_Clip(rast, ST_MakeEnvelope(93550,436350, 93750,436600, 28992)) AS rast
- 3 FROM rotterdam rt
- 4 WHERE ST_Intersects(rast, ST_MakeEnvelope(93550,436350, 93750,436600, 28992));

Figure 16: 3e - extent view in QGIS

Figure 17: 3e - Clipped raster

```
CREATE TABLE rescaled_raster AS
SELECT
ST_Clip(rast, ST_MakeEnvelope(93550, 436350, 93750, 436600, 28992)),
O.25,
O.25,
O.25
N ) AS rast
FROM rotterdam rt
WHERE ST_Intersects(rast, ST_MakeEnvelope(93550, 436350, 93750, 436600, 28992));
```


Figure 19: 3f - Rescaled raster

General

Name	clipped_raster_3e
Source	dbname='Assignment7' host=localhost port=5432 srid=0 table="public"."clipped_raster_3e" (rast)
Provider	postgresraster

Information from provider

Extent	93549.9999999999997962732,436349.900000006053597 : 93750.0999999998020940,436600.000000005820766
Width	2001
Height	2501
Data type	Byte - Eight bit unsigned integer
Additional information	
Is Tiled	false
Overviews	
Pixel Size	0.1, -0.1
Primary Keys SQL	ctid
Temporal Column	
Where Clause SQL	

Figure 20: 3f - Properties before rescale

General

Name	rescaled_raster
Source	dbname='Assignment7' host=localhost port=5432 srid=0 table="public"."rescaled_raster" (rast)
Provider	postgresraster

Information from provider

Extent	93549.99999999997962732,436349.7500000005820766 : 93750.24999999997962732,436600.000000005820766
Width	801
Height	1001
Data type	Byte - Eight bit unsigned integer
Additional information	
Is Tiled	false
Overviews	
Pixel Size	0.25, 0.25
Primary Keys SQL	ctid
Temporal Column	
Where Clause SQL	

Figure 21: 3f - Properties after rescale

4 Visualize raster data from the database in QGIS frontend

We have presented some of the results of Part III in QGIS and attached them to Part 3.

Figure 22: Overview of the raster data in QGIS