
GEO-1015, Assignment-3: The best shape detection algorithm is...

Ming-Chieh Hu (6186416), Daan Schlosser (5726042)
Neelabh Singh (6052045) & Lars van Blokland (4667778)

January 17th, 2025

Contents

1 Introduction 2
1.1 Overview of the assignment and objectives . 2
1.2 Used dataset . 2

2 Methodology 3
2.1 RANSAC . 3

2.1.1 Improved RANSAC . 3
2.1.2 Post-processing function . 4
2.1.3 Cluster by distance . 4
2.1.4 Parameters and their effects . 5
2.1.5 Time Complexity . 7

2.2 Region Growing . 8
2.2.1 Algorithm explanation . 8
2.2.2 Seed point selection . 8
2.2.3 Implementation and modifications . 10
2.2.4 Parameters and their effects . 11
2.2.5 Time Complexity . 12
2.2.6 Optimization impact on time complexity . 12
2.2.7 Worst-case Time Complexity . 13

2.3 Hough Transform . 13
2.3.1 Algorithm explanation . 13
2.3.2 Implementation . 13
2.3.3 Modifications . 13
2.3.4 Parameters and their effects . 14

3 Results and comparison 17
3.1 Parameter Optimization . 17
3.2 Visualizations and Visual Analysis for each Algorithm . 17
3.3 Comparison of Methods . 19

3.3.1 Pros and cons of each algorithm . 19
3.3.2 Comparison of algorithms (accuracy, speed, robustness) 20

4 Conclusion 20

1

1 Introduction

1.1 Overview of the assignment and objectives

In this assignment, we evaluate three popular shape detection algorithms - RANSAC, Region Growing and
Hough Transform - to determine the best approach for identifying planes in spatial datasets.

The primary objectives of this report are:

1. To understand the underlying principles and ideas of the three algorithms.

2. To implement and refine these algorithms using real-world datasets and to assess their performance.

3. To compare the algorithms based on metrics such as accuracy, execution time, and robustness.

4. To provide a final recommendation on the best algorithm for plane detection for AHN4 data.

1.2 Used dataset

In this assignment we use the given BK-City dataset (and a subset) which contains a 3d point cloud of TU
Delft’s Bouwkunde faculty building, where the ground and nearby vegetation has been removed. This building
is part of the AHN4 dataset.

2

2 Methodology

2.1 RANSAC

We start by implementing the basic RANSAC algorithm in the terrain-book. The algorithm works but there
are many improvements that can be made, which will be mentioned in this and the next sections.

2.1.1 Improved RANSAC

From the results of the BK city dataset, we observed some unexpected horizontal planes (Figure 1.a). Although
these planes met the minimum inlier point threshold, they weren’t the intended outcomes. To address this, we
developed an improved selection process to better guide the function towards the desired results (Algorithm
1). The new selection process follows a two-step procedure. First, it randomly selects a single point. Then,
it selects three additional points from the neighbors of the first point and use them as parameter to construct
plane. By doing so, the selected 3 seed points are more likely to lie on the same plane, effectively reducing the
occurrence of unwanted horizontal planes. Note that the search radius for this process is set to 5 meters, a
moderate scale suitable for buildings.

Algorithm 1: Improved RANSAC algorithm using nearest neighbor

Input: An input point cloud P , a mask to determine whether a point has been categorized or not, the
error threshold ϵ, and the number of iterations k

Output: The set of points Cbest, the score sbest, the detected plane instance Ibest
sbest ← 0;
Cbest ← 0;
Ibest ← nil;
for i← 0 . . . k do

p0 ← 1 randomly selected point from P ;
M ← 3 randomly selected point from neighbors(p0);
I ← plane instance constructed from M ;
C ← ∅;
forall p ∈ P do

d← distance(p, I);
if d < ϵ then

if p is not masked then
Add p to C;

s← score(C);
if s > sbest then

sbest ← s;
Cbest ← C;
Ibest ← I;

return Cbest, sbest, Ibest

(a) Simple RANSAC (b) Improved RANSAC

Figure 1: Different implementation of RANSAC outcomes (without using post-processing and clustering func-
tions). In these 2 pictures we use parameters: k = 1000, smin = 300, and ϵ = 0.1.

3

2.1.2 Post-processing function

Up to this point, we have successfully eliminated the unwanted horizontal planes. However, the model still
generates some unintended ’stripes’ near the intersection of planes, which is a special case. This issue arises
from the mask we designed; while it simplifies the classification process, it also limits our ability to handle
this scenario. To address this, we propose a post-process (as Algorithm 2) that identifies points near plane
intersections and re-classifies them based on the class of their nearest neighbors. It is clearly shown in Figure
2 that the ’stripes’ are eliminated by the post-processing function. Note that the nearest neighbors algorithm
here searches within a radius of 5× ϵ, the 5 here is a parameter multiplier we added and exposed to users.

Algorithm 2: Post-processing function

Input: An input point cloud P with id as its 4th dimension, list of detected plane instance LI , the
error threshold ϵ

Output: Point cloud P with id as its 4th dimension
forall I ∈ LI do

collison← ∅;
forall p ∈ P do

d← distance(p, I);
if d < ϵ then

if p doesn’t have same id as I then
Add p to collison;

forall p ∈ collison do
N ← neighbors(p, (5× ϵ));
p[3]← majority class found in N ;

return P

Without post-process With post-process

Figure 2: Outcomes before and after post-processing. (To better showcase the ’stripe’ we use BK subset here.)
In these 2 pictures we use parameters: k = 1000, smin = 50, and ϵ = 0.1.

2.1.3 Cluster by distance

Some points classified by RANSAC may belong to the same large plane, even though they are not connected and
are located far apart. In such cases, we aim to separate these points into distinct surfaces to more accurately
represent the building’s geometry. While DBSCAN is a powerful algorithm for this task, we observed significant
variations in surface density due to the LiDAR sensor’s shot angle. To address this issue more effectively, we
propose a clustering function (Algorithm 3) that relies solely on the distances between clusters, rather than
their density.

This function introduces 2 new parameters into our method: the distance threshold δ and nmin, the minimum
score required for a cluster to be considered valid. Note that, when this function is applied, the outcome may

4

include clusters with surface inliers less than smin.

Algorithm 3: Cluster by distance

Input: An subset of point cloud Ps in a specific plane (with id as its 4th dimension), a minimum score
nmin for a surface to be considered valid, the distance δ defining the radius of a neighborhood

Output: Point cloud Ps with id as its 4th dimension
todo← [];
id← 1;
Ps[..., 3]← 0;
forall ps ∈ Ps do

if ps is not labeled as 0 then
continue

Append ps to todo;
while todo is not empty do

current← pop(todo);
N ← neighbors(current, δ);
forall ps ∈ N do

if ps is labeled as 0 then
size← size+ 1;
Append ps to todo;
ps[3]← id;

id← id+ 1;
for i← 0 . . . id do

Pi ← {all points ps labeled as i};
if size(Pi) < nmin then

Pi[..., 3]← 0;

return Ps

Without clustering With clustering

Figure 3: Outcomes before and after distance clustering. In these 2 pictures we use parameters: k = 1000,
smin = 300, ϵ = 0.1, multiplier = 5. Clustering function uses δ = 4.0, nmin = 10.

2.1.4 Parameters and their effects

In the simplest form of RANSAC, there are three key parameters: the number of iterations k, the minimum
score smin required for a plane to be considered valid, and the error threshold ϵ, which defines the boundary
for determining whether a point belongs to a plane.

Original RANSAC parameters
As long as the computer has sufficient processing power, a larger value of k generally yields better results.
However, if k is set too low, the number of iterations may be insufficient to identify the ”best” plane, resulting
in an outcome that resembles a collage of poorly segmented planes (Figure 4). Beyond a certain point, increasing

5

k further will reach a bottleneck where it no longer improves the results. smin is a critical parameter that requires
careful selection. A larger smin will ignore smaller, trivial surfaces, while a smaller smin will include more trivial
surfaces (Figure 5). However, a smaller smin may also increase processing time. Similar to smin, ϵ must also be
chosen carefully. A larger ϵ often results in cascade-like patterns, while a smaller ϵ may create a camouflage-like
figure due to its low tolerance for variation (Figure 6).

k = 20, 312 surfaces found k = 100, 226 surfaces found k = 500, 246 surfaces found

Figure 4: RANSAC with different k values. In these 3 pictures, smin is set to 300 and ϵ is set to 0.1.

smin = 100, 396 surfaces found smin = 200, 225 surfaces found smin = 400, 142 surfaces found

Figure 5: RANSAC with different smin values. In these 3 pictures, k is set to 500 and ϵ is set to 0.1.

ϵ = 0.4, 459 surfaces found ϵ = 0.2, 344 surfaces found ϵ = 0.05, 277 surfaces found

Figure 6: RANSAC with different ϵ values. In these 3 pictures, k is set to 500 and smin is set to 300.

New parameters used in post-processing and clustering
The multiplier parameter is used to define the search radius for our post-processing function. The radius is
calculated as multiplier × ϵ to perform the nearest neighbors query. Choosing a reasonable value for the mul-
tiplier is straightforward. For example, in the BK city dataset, we set ϵ = 1 and multiplier = 5, resulting in a
0.5-meter search radius, which works well with the point density and distribution of the dataset. Choosing an
excessively large multiplier can lead to false classifications of points, while selecting a value that is too small
may prevent some points from finding their neighbors, causing them to be excluded from the surface (Figure
7).

The parameters δ and nmin are integral to the distance-based clustering function. A large δ may prevent the
program from properly separating planes into distinct surfaces (Figure 8), while a small δ can result in the

6

generation of numerous trivial surfaces. Similarly, nmin significantly affects the resulting surfaces. A larger
nmin eliminates more small clusters, whereas a smaller nmin preserves these trivial clusters (Figure 9).

multiplier = 1, 266 surfaces found multiplier = 5, 253 surfaces found multiplier = 20, 266 surfaces
found

Figure 7: RANSAC with different multiplier values. With k = 500, smin = 300, ϵ = 0.1, δ = 4.0, nmin = 10.

δ = 2, 266 surfaces found δ = 4, 213 surfaces found δ = 8, 208 surfaces found

Figure 8: RANSAC with different δ values. With k = 500, smin = 300, ϵ = 0.1, multiplier = 5, nmin = 10.

nmin = 5, 364 surfaces found nmin = 25, 167 surfaces found nmin = 125, 106 surfaces found

Figure 9: RANSAC with different nmin values. With k = 500, smin = 300, ϵ = 0.1, multiplier, δ = 4.0.

2.1.5 Time Complexity

We estimated the time complexity of algorithm 1, 2, 3 with n = the number of points in point cloud P .

The time complexity of our RANSAC is O(|LI | × (kn + n log n)), where k is the iteration number and |LI | is
the number of ’plane’ instances before distance clustering (|LI | ≪ n). The time complexity of post-process is
O(|LI | × (n + c(log n + m))), Where c is the number of points in collision (c < n) and m is the number of
neighbors within search radius. The time complexity of distance clustering is O(n log n+ nm). Where m is the
number of neighbors within δ.

Since we have m≪ n, c < n, combining them sequentially yields: O(|LI | × (kn+ n log n)).

7

2.2 Region Growing

2.2.1 Algorithm explanation

The Region Growing algorithm is a method for extracting regions from a point cloud by iteratively expanding
regions from seed points based on a similarity criterion. In our implementation, we focus on 3D point clouds
and use normal vectors as the primary criterion for region growing. A region R grows by examining neighboring
points of its members and adding candidate points c that satisfy a similarity criterion. For plane detection,
this criterion involves checking if the angle between the normal vector of c and the region’s normal is below a
threshold. If the angle is small, c is added to R; otherwise, it is ignored. The process continues until no more
compatible points are found, at which point the algorithm moves to the next seed point to grow a new region.

Algorithm 4: Region Growing Algorithm

Input: An input point cloud P , a list of seed points LS , a function to find the neighbours of a point
neighbours()

Output: A list with detected regions LR

LR ← [];
for each s in LS do

S ← {s};
R← ∅;
while S is not empty do

p← pop(S);
for each candidate point c ∈ neighbours(p) do

if c was not previously assigned to any region then
if c fits with R then

Add c to S;
Add c to R;

Append R to LR;

return LR

2.2.2 Seed point selection

The selection of seed points is a critical operation within the Region Growing algorithm that identifies the
starting points for region expansion. Numerous methods have been proposed for selecting seed points, but
our implementation commences with normal and planarity computation for each point in the point cloud P .
From the original point, the algorithm looks for k-nearest neighbors using a KDTree, centers this neighborhood,
and computes the covariance matrix. Then, Principal Component Analysis (PCA) extracts the normal vector
(the eigenvector associated with the smallest eigenvalue) and computes planarity as λ2−λ3

λ1
, where λ1, λ2, and

λ3 are the eigenvalues in descending order. The normals are oriented upwards, and the planarity values are
stored. In the second step, points are sorted by planarity in descending order, and the top N points (where
N = max(min seed, 0.02 × total points), with min seed being a new parameter for the minimum number of
seed points) are selected as seed points. These seed points will begin the region growing process, ensuring that
regions start with the most reliable planar points.

8

Algorithm 5: Seed Point Selection for Region Growing

Input: - A point cloud P from a LAZ file;
- Parameters: begin

- k: Number of nearest neighbors;
- max angle: Angle threshold in degrees;
- min seed: Minimum number of seed points to select;

Output: - A list of seed points for region growing;

Step 1: Compute Normals and Planarity begin
for each point in points do

Find k nearest neighbors using KDTree;
Center the neighborhood by subtracting the centroid;
Compute covariance matrix of the neighborhood;
Perform PCA to get eigenvalues and eigenvectors;
Extract normal vector (eigenvector of smallest eigenvalue);
Ensure normal points upward (positive z);
Compute planarity = (λ2 − λ3)/λ1;
Store normal and planarity for each point;

Step 2: Select Seed Points begin
]

Sort points by planarity in descending order;
Select top N seed points (N = max(min seed, 2% of total points);

Figure 10: Normal vectors of points and selected Seed points

9

2.2.3 Implementation and modifications

Our method retains the core idea of Region Growing while introducing further improvements. This base
algorithm uses normal vectors and angle-based similarity criteria to determine the membership of region, while
KDTree data structure is implemented for efficient nearest neighbor searching in large point clouds. The key
modifications we applied are as follows:
1. Dynamic normal vector updates: Apart from using static normals, we will update the average normal vector
of the region every time a point is added to the region. This adopts the least-coupled approach to ensure a
good coherence of the regions detected and improves the plane detection.
2. Region size filtering: The minimum size threshold for a region will be set to eliminate very small sections of
the detected region from processing due to noise. Although this introduces yet another parameter, this measure
very effectively increased the quality of the planes detected by reducing the number of discarded planes.

Figure 11: Outcome for BK city having 165 planes. Above we use parameters: k = 25,max angle =
30,min seeds = 20000,min region size = 10.

10

Algorithm 6: Region Growing using Normal Similarity

Input: - points: A NumPy array of shape N × 3 containing point coordinates (x, y, z);
- normals: A NumPy array of shape N × 3 containing normal vectors for each point;
- k: Number of nearest neighbors to consider;
- max angle: Maximum allowed angle (in degrees) between normals for region growing;
- tree: A KDTree built from the points for efficient nearest neighbor search;
- seed points: A list of seed points to start region growing;
- min region size: Minimum number of points in a region
Output: - A NumPy array segment ids of shape N containing segment IDs for each point;

Region Growing begin
Convert max angle to radians: max angle rad = np.deg2rad(max angle);
Initialize: begin

processed = array of False (size = number of points);
regions = [] (to store detected regions);
min region size = 10 (minimum points for a valid region);

for each seed point seed in seed points do
if processed[seed] is True then

Skip to the next seed point;

Initialize: begin
S = {seed} (stack of points to process);
R = ∅ (current region);
region normals = [] (normals of points in the region);

while S is not empty do
Pop a point p from S;
Find k + 1 nearest neighbors of p using tree;
for each neighbor c in neighbors (excluding p) do

if processed[c] is False then
Compute the region normal: begin

if R is not empty then
region normal = mean(region normals);
Normalize region normal;

else
region normal = normals[seed];

Compute the angle between region normal and normals[c];
if angle < max angle rad then

Add c to S;
Add c to R;
Mark c as processed;
Add normals[c] to region normals;

if size of R ≥ min region size then
Add R to regions;
Print region size for debugging;

Assign Segment IDs begin
Initialize segment ids = array of zeros (size = number of points);
for each region in regions do

Assign a unique segment ID to all points in the region;

return segment ids ; // Return the final segment IDs

2.2.4 Parameters and their effects

In the simplest form of Region growing, there are two key parameters: the number of number of nearest
neighbours k, the minimumangle difference required for a normal to be considered for determining whether a
point belongs to a plane.

11

k = 5, max angle = 25◦,
min seeds = 3000

k = 25, max angle = 5◦,
min seeds = 3000

k = 25, max angle = 25◦,
min seeds = 500

k = 25, max angle = 25◦,
min seeds = 3000

k = 25, max angle = 25◦,
min seeds = 7000

k = 100, max angle = 25◦,
min seeds = 3000

Figure 12: Region Growing segmentation with various k, max angle, and min seeds values.

Core Parameters The neighborhood size, k, controls the number of neighbors considered for normal esti-
mation. This parameter significantly impacts the smoothness of the computed normals and, consequently, the
quality of the segmentation. We observed that a range of 5 to 30 neighbors generally produces optimal results.
Values of k smaller than 5 resulted in noisy normals, while values exceeding 45 caused over-smoothing.
The angular threshold, max angle, defines the maximum permissible angle between the normals of two adjacent
points for them to be part of the same region. Testing revealed that lower values, such as 1◦ to 3◦, led to excessive
over-segmentation, where even minor variations in plane orientation caused unnecessary splitting.

Additional Parameters The min region size parameter filters out regions with fewer than 10 points, ef-
fectively eliminating noise and small, irrelevant segments, this can be exposed to user and be free to change
based on the users knowledge of dataset. Meanwhile, min seeds determines the minimum number of seed points
required for initiating region growth. This parameter is crucial in avoiding premature or excessive segmentation.
By default, it is set to the (where N = max(min seed, 0.02× total points), where n is the total number of points
in the dataset.

Conclusion The optimal parameter configuration for Region Growing segmentation is highly dependent on
the dataset’s characteristics and the specific requirements of the analysis. Based on our findings, values of
k = 25, max angle = 30◦, and min seeds = 3000 yielded the best results for typical architectural datasets.

2.2.5 Time Complexity

The three main components of time complexity of our region growing algorithm are as follows. The first one
is O(n × k log n) for the normal estimation, where n and k are as usual the number of points in the point
cloud and the number of nearest neighbors used for the PCA respectively. The seed point selection process
requires O(n log n), and it arranges the points on the basis of the planarity. The region growing complexity is
O(|LS| × |R| × k × (log n+ |R|)), where |LS| changes, but is usually contained within (min seed) or 2% of the
total points., and |R| is the average region size. As |R| ≪ n and k is constant, we can take an average-case
complexity in sequence, which is O(n log n).

2.2.6 Optimization impact on time complexity

In our implementation, which deviates from the terrainbook’s implementation, we precompute all neighbors in
the k-d tree. This results in only having to query the k-d tree once before the loop, instead of querying the k-d
tree each time it loops. This improves the total runtime significantly, resulting in an overall runtime of around
220x faster.

12

2.2.7 Worst-case Time Complexity

In the worst case, the point cloud forms a flat wall, or when the angle of the wall is lenient, to make matters
worse, |R| cannot be tightly restrictive and may grow to become as big as n with many seed points (|LS| ≈ n).
It eventually leads to O(n2 log n) for input size n.

2.3 Hough Transform

2.3.1 Algorithm explanation

The Hough Transform detects planes in point clouds by generating a large number of candidate planes, which
are then voted on by points depending on whether or not a point lies on or near a plane. Candidate planes with
more votes than others are assumed to be a better description of the true planes.

2.3.2 Implementation

Plane generation Planes are initially generated in spherical coordinates using the parameters Theta, Phi
and Rho. Theta and Phi are both in degrees and signify the angle interval between each plane. Rho is in meters
and signifies the distance between each plane. Combining all values in the parameter intervals results in an
array of triplets, where each triplet describes a single plane. This array is converted into two new arrays: The
first contains points in Cartesian space, which are the points on the planes closest to the origin. The Second
array contains the normal vectors for each of these planes. These arrays are respectively plane_points and
plane_normals.

Accumulator voting Our accumulator consists of an array, with at every index a sub-array for each plane.
For every point the algorithm computes the number of planes that lie within Epsilon distance of the current
point. To compute this distance, the point is subtracted from the plane_points array, which results in an
array of vectors that go from the current point to the plane. Then we compute the dot product of this new
array and the plane_normals array. The result is an array of values, where every value indicates the distance
between the current point and each of the planes. Planes that have a distance smaller than epsilon have a vote
added in the accumulator.

Plane consolidation After voting has concluded it is necessary to extract the final planes from the accumula-
tor. The underlying assumption is that planes with more votes are more likely to be correct. The consolidation
step works by iterating over the planes in the accumulator, starting with the plane that got the most votes.
All points found by this plane are removed from all other planes. Planes that now have less votes than the
parameter Alpha are removed from the accumulator. Then the accumulator is resorted and the process repeats
with the now second largest plane. When this loop terminates, each point will only be contained by a single
plane.

2.3.3 Modifications

Point cloud chunking One of the main issues encountered when processing the entire BK dataset was a
”layer cake” (see 18) like affect caused by horizontal planes dissecting the entire point cloud. Since these planes
would find large numbers of points, they would be prioritized over legitimate planes. Our solution was to split
the point cloud up into separate chunks, so that each chunk could be processed individually and then merged.
This ensured that the horizontal planes would be outvoted by more desirable ones. As an additional bonus,
processing the point cloud in chunks also results in a significant speedup.

Bounding box based plane removal To ensure that every point has the potential to be discovered by
one of the planes, we generate many more planes than are necessary. While the voting process will eventually
eliminate any unnecessary planes, a large number of these planes will never acquire a single vote. Many of these
zero-vote planes can be detected by doing an intersection test between the planes and the bounding box of the
point cloud. If a plane doesn’t intersect with the bounding box of a point cloud, it will never intersect with any
of its points.

Intermediate vote based plane removal Assuming that the point cloud was shuffled before voting, planes
acquire votes fairly uniformly during the voting period. This means that voting trends can be used to determine
which planes will eventually be relevant and which won’t. The Acceleration_factor parameter is used by
the algorithm to determine when to pause during the voting process. The median number of votes of the most
popular planes is then used to cull a large number of unpopular planes. This vastly speeds up the algorithm,
as significantly less planes need to be considered for the remainder of the points.

13

Plane re-processing After acquiring planes for each chunk, these planes need to be merged together. Al-
though each chunk uses the same set of planes, different chunks find subtly different planes for sections of points
that should be defined by a single plane. This results in a ”patchy” classification (see 19). To fix this, the entire
algorithm is performed again using only the planes found by processing the chunks. Due to the lowered number
of planes this step is much faster than the initial pass. The resulting classification has less total planes and isn’t
as ”patchy”.

Plane cleaning Since the generated planes are infinitely large, they may ”cut” through sections they aren’t
supposed to. During the consolidation process larger planes take points from smaller ones, meaning that a large
plane could steal points from a smaller one (see 20). To fix this, we perform a final cleaning step. A KD-Tree
is made using the classified points, which is used to find the closest neighbors for each point. Every point the
counts the number of neighbors belonging to a different plane. If enough neighbors belong to a different plane,
the current point is reclassified.

2.3.4 Parameters and their effects

Hough Transform makes use of the following parameters:

• Theta, Phi and Rho which describe the number of planes and their distribution across the space.

• Alpha which describes the minimum number of points a plane needs to be a plane

• Epsilon which describes how far away a point is allowed to be from a plane before it is no longer a part
of it.

• Chunk size which describes how large each chunk of points is in the x and y directions.

• Acceleration factor which describes at which point in the voting process the accumulator is culled of
useless planes.

• Reprocessing whether or not the planes are reprocessed after merging the chunks together.

• Cleaning distance which describes the maximum distance a neighbor can have when performing plane
cleaning.

• Cleaning neighbors which describers how many neighbors are evaluated when performing plane cleaning.

Epsilon is 0.15 Epsilon is 0.30 Epsilon is 0.45

Figure 13: Hough Transform with different Epsilon values.

Theta is 10 Theta is 20 Theta is 30

Figure 14: Hough Transform with different Theta intervals.

14

Phi is 10 Phi is 20 Phi is 30

Figure 15: Hough Transform with different Phi intervals.

Rho is 10 Rho is 20 Rho is 30

Figure 16: Hough Transform with different Rho intervals.

Chunk size is 10 Chunk size is 25 Chunk size is 40

Figure 17: Hough Transform with different chunk sizes.

Chunking is enabled Chunking is disabled

Figure 18: Hough Transform when chunking of points is enabled and disabled.

15

Reprocessing is enabled Reprocessing is disabled

Figure 19: Hough Transform when reprocessing of the planes is enabled and disabled.

Cleaning is enabled Cleaning is disabled

Figure 20: Hough Transform when cleaning of the planes is enabled and disabled.

16

3 Results and comparison

3.1 Parameter Optimization

We fine-tuned our parameters with the following objectives, without any specific order or hierarchy:

• Enhancing the sharpness of detected surfaces.

• Minimizing the number of unclassified points.

• Reducing the number of falsely classified points.

• Maximizing time efficiency.

The parameters we ultimately selected are:

• RANSAC: k = 1000, smin = 200, ϵ = 0.1, multiplier = 5, δ = 3.5, nmin = 20.

• Region Growing: k = 25, max angle = 30, min seeds = 20000, min region size = 30.

• Hough Transform: Alpha = 50, Epsilon = 0.15 Theta = 10, Phi = 10, Rho = 0.1, ChunkSize = 25,
Accelerationfactor = 10, Reprocessing = true, Cleaningdistance = 2, Cleaningneighbors = 80

3.2 Visualizations and Visual Analysis for each Algorithm

RANSAC result: classified points. RANSAC result: all points.

Figure 21: Classified and non-classified points from RANSAC outcome, with k = 1000, smin = 200, ϵ = 0.1,
multiplier = 5, δ = 3.5, nmin = 20.

17

Some of the walls and even windows are extracted. Some of the walls are being neglected.

It fails to identify most points of the tower. Some points are missed in a specific pattern due to
post-process.

Figure 22: RANSAC outcome with k = 1000, smin = 200, ϵ = 0.1, multiplier = 5, δ = 3.5, nmin = 20.

The walls and even windows are extracted. Curved Surfaces are not clearly segmented

Bigger features are much clear and less noisy. Small feature can be segmented with enough amount
of seed points.

Figure 23: Region Growing outcome 165 planes. Above we use parameters: k = 25,max angle =
30,min seeds = 20000,min region size = 10.

18

Some of the walls are missing Some plains are still split, even after reprocessing

The tower was not captured effectively Most planes were captured nicely, but performance
could definitely be better

Figure 24: Hough Transform outcome: 150 planes. These images use the standard parameters

3.3 Comparison of Methods

3.3.1 Pros and cons of each algorithm

RANSAC
Due to RANSAC’s nature of randomness, it’s possible to have different result every time running the program
(unless someone fix the random seed).

While RANSAC gives excellent results within a short time frame (around 3–5 minutes for the BK city dataset),
it struggles to detect smaller or less-dense planes. This limitation arises from the multiple parameters that
require fine-tuning, which can be challenging due to their interdependence within our pipeline structure. Ad-
ditionally, a plane-detection-specific RANSAC cannot identify certain curved surfaces (e.g., the BK Tower).
To extract curved surfaces, RANSAC requires the incorporation of multiple detection models tailored for such
geometries.

19

Region Growing
Region growing achieves comprehensive plane detection with high local accuracy as it is a bottom-up segmenta-
tion approach in which normal computation is performed using PCA, followed by planarity-based seed selection
and iterative region growth via comparison with neighbors. It takes around 10-15 minutes to process the full
BK-City dataset. The method donest have noise in bigger planes and also tries to segment the curved surfaces
with least number of unclassified points. If seed points are there for all the planes correctly and the parameters
are tuned well enough, then this method will have all the planes segmented properly with least noise.
The bottleneck in the speed of the algorithm is outstandingly formed by KD-tree queries and normal compu-
tations. Performance varies by point cloud characteristics: planar regions process efficiently, whereas intricate
geometries demand extra computation due to frequent normal comparisons. The method doesn’t require prior
knowledge of the number of planes, which increases its flexibility; independently-growing regions take more time
in computation.

Hough Transform
Hough Transform has no identifiable pros. It is inherently slow due to the brute-force nature of the algorithm.
Additionally the Theta, Phi and Rho parameters which have arguably the largest impact on both speed and
quality need to be fine tuned for each point cloud, making it very fragile. Hough Transform also requires many
modifications from the base algorithm before it becomes workable on larger datasets. The chunking step is
especially vital, as without it the point cloud would resemble a layered cake. Further work could focus on
automatically determining optimal values for Theta, Phi and Rho, although doing this would mean Hough
Transform would become similar to Region Growing.

3.3.2 Comparison of algorithms (accuracy, speed, robustness)

Time Complexity Runtime (s) Surfaces Found Unclassified Points
RANSAC O(|LI | × (kn+ n log n)) 235.36 224 16189
Region Growing O(LS | × |R| × k × (log n+ |R|) 753.56 165 7874
Hough Transform O(|P | × |Theta| × |Phi| × |Rho|) 612.90 150 13433

4 Conclusion

The best shape detection algorithm is... yet to be determined.

In our opinion, without taking the overall run-time into account, the Region Growing algorithm gives the best
result in terms of the unclassified points, extracted surfaces, visually interpretability. The overall run-time of
the Region Growing algorithm is due to the (re)calculation of the normal’s and the neighbours in the k-d tree
due to the required for-loop, which is inherently part of the Region-Growing algorithm/paradigm.

We therefore also wrote a similar Region Growing approach: regiongrowing_noloop.py. Which initiates the
k-d tree and all the neighbours for the seed points, without in-between updating and querying of the k-d tree
for each candidate point.

On the other hand, RANSAC and Hough Transform operate on a similar logic when it comes to identifying
planes, and they produce comparable results. However, Hough Transform requires tuning a larger number of
parameters, and the algorithm itself demands more improvements to function effectively.

20

	Introduction
	Overview of the assignment and objectives
	Used dataset

	Methodology
	RANSAC
	Improved RANSAC
	Post-processing function
	Cluster by distance
	Parameters and their effects
	Time Complexity

	Region Growing
	Algorithm explanation
	Seed point selection
	Implementation and modifications
	Parameters and their effects
	Time Complexity
	Optimization impact on time complexity
	Worst-case Time Complexity

	Hough Transform
	Algorithm explanation
	Implementation
	Modifications
	Parameters and their effects

	Results and comparison
	Parameter Optimization
	Visualizations and Visual Analysis for each Algorithm
	Comparison of Methods
	Pros and cons of each algorithm
	Comparison of algorithms (accuracy, speed, robustness)

	Conclusion

