
Accelerating Large-scale, Hi-res Raster Data Processing Workflows

MING-CHIEH HU, Delft University of Technology, The Netherlands

1 Introduction

At Readar, high-resolution aerial images are used to compute large-scale photovoltaic (PV) potential statistics,
providing deeper insights into buildings. This process relies on tiled raster data with a resolution of 8cm covering
the entire Netherlands.

However, handling such high-resolution data becomes the main bottleneck for subsequent processing steps.
Even with parallel computation and optimized file I/O, the workflow remains slow. The existing implementation
uses Python, which is not inherently slower than C or C++ for many operations because libraries like NumPy
internally use highly optimized C or C++ code accessible through Python APIs.

In this study, we aim to address this bottleneck by exploring and comparing different methods through a series of
experiments. Specifically, we investigate and evaluate three approaches: the Vector–Raster method (baseline
solution), the Raster–Raster method, and a Hybrid method, the latter two being newly proposed in this work.

The goal is to systematically analyze their performance and suitability for the task at hand, considering both
accuracy and computational efficiency. The scope of this study is limited to:

• Implementations in Python, using libraries such as NumPy and Rasterio;
• Excluding GPU-based acceleration, to ensure the methods remain accessible and portable across different
computing environments and hardware configurations.

By comparing these methods under controlled conditions, this work aims to identify practical solutions that
balance memory and time efficiency.

The structure of this paper is as follows. Section 3 describes the sample data used to evaluate the proposed
approaches. Section 2 outlines the theoretical background and methodology. Section 4 presents the experimental
results and analysis. Finally, Section 5 concludes the study and discusses potential directions for future work.

2 Methodology

This task involves calculating and generating statistics on the coverage of PV panel installations on building
rooftops, primarily by measuring area. It uses both raster and vector data and is part of the routine raster
processing workflow. Similar to aggregation functions, this task focuses on analysis rather than geometry. The
key focus is PV panels located on building rooftops—think of it like a cookie cutter: classified rasters are "cut"
using numerous building polygons to isolate and analyze only the relevant areas.

2.1 Vector-Raster Method (Baseline)

As shown in Algorithm 1, with a given raster file, the method begins by querying a PostGIS database to retrieve
all building geometries contained within the file’s spatial bounds. Then, for each building polygon, it performs
a series of operations in parallel: the raster is opened and clipped to the extent of the polygon geometry, after
which the resulting masked image is converted to a binary map where pixels equal to 3 become 1 and all others
become 0. The pixels with value 1, representing photovoltaic areas, are counted, and the building’s identifier, PV
pixel count, and total pixel count are recorded. The results from all buildings are then compiled into a DataFrame
for further analysis or storage.

2.2 Raster-Raster Method (Proposed)

The Vector-Raster (baseline) method is simple and performs well with a small number of building polygons.
However, beyond a certain threshold, performance degrades significantly because each polygon requires a
separate raster file I/O operation.

Author’s address: Ming-Chieh Hu, m.hu-5@student.tudelft.nl, Delft University of Technology, Delft, The Netherlands.



2 • Ming-Chieh Hu

Algorithm 1 Baseline PV Detection
Require: Raster R, polygon layer 𝑃 = {𝑝1, 𝑝2, . . . , 𝑝𝑛}
Ensure: DataFrame D with pixel statistics per polygon
1: for all 𝑝𝑖 ∈ 𝑃 do ⊲ This is processed in parallel
2: 𝑑𝑎𝑡𝑎 ← read_raster(R)
3: 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 ← clip(𝑑𝑎𝑡𝑎, 𝑝𝑖 )
4: 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 ← (𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 == 3)?1 : 0
5: 𝑐𝑜𝑢𝑛𝑡𝑠 ← 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛.𝑠𝑢𝑚()
6: Record (id𝑝𝑖 , 𝑐𝑜𝑢𝑛𝑡𝑠, 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛.𝑠𝑖𝑧𝑒) into D
7: end for
8: return D

When dealing with a very large number of polygons, it is generally more efficient to convert the vector data into
raster format. This approach benefits from a technique known as, ironically, vectorization. In NumPy, vectorization
refers to performing operations on entire arrays without explicit Python loops. By replacing iterative processes
with vectorized operations, we can take advantage of NumPy’s underlying C implementation for faster and more
efficient computation. In other words, counting pixel values for many small patches in a Python loop is much
slower than processing one large raster all at once.

The task is transformed from a vector–raster intersection to a raster–raster multiplication, replacing explicit for-
loops with a raster-based data structure. Rasterization is therefore key to our approach. We propose a rasterized
solution utilizing rasterio.mask.raster_geometry_mask(), manually create an integer map, and read the
raster file in tiles, performing raster multiplication tile by tile

This method is designed with memory efficiency in mind as the raster data is read and processed in tiles. The
general framework is illustrated in Algorithm 2.

Algorithm 2 Rasterized PV Detection
Require: Raster R, polygon layer 𝑃 = {𝑝1, 𝑝2, . . . , 𝑝𝑛}
Ensure: DataFrame D with pixel statistics per polygon
1: for all 𝑝𝑖 in 𝑃 do
2: 𝑚𝑎𝑝 ← rasterize_polygon(𝑝𝑖 )
3: 𝑠𝑖𝑧𝑒 ← np.count_nonzero(𝑚𝑎𝑝)
4: Record (𝑖𝑑, 𝑠𝑖𝑧𝑒) into D
5: Record𝑚𝑎𝑝 into𝑚𝑎𝑝𝑠 ⊲ Burn polygon IDs into𝑚𝑎𝑝𝑠

6: end for
7: 𝑡𝑖𝑙𝑒𝑠 ← divide_into_subtiles(𝑚𝑎𝑝𝑠)
8: for all 𝑡𝑖𝑙𝑒 in 𝑡𝑖𝑙𝑒𝑠 do
9: 𝑑𝑎𝑡𝑎 ← read_raster(R, 𝑡𝑖𝑙𝑒 .𝑏𝑜𝑢𝑛𝑑𝑠)
10: 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 ← 𝑡𝑖𝑙𝑒 ⊙ 𝑑𝑎𝑡𝑎
11: 𝑐𝑜𝑢𝑛𝑡𝑠 ← np.bincount(𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛)
12: end for
13: for all 𝑖𝑑 ≠ 0 do
14: Record (𝑐𝑜𝑢𝑛𝑡𝑠 [𝑖𝑑]) into D
15: end for
16: return D

2.3 Hybrid Method (Proposed, best-performing)

The baseline Vector-Raster method demonstrates optimal performance when processing a limited number of
building polygons, primarily due to reduced I/O operations. Conversely, the Raster-Raster method excels when
handling large polygon datasets with extensive spatial coverage. As illustrated in Section 3, building distribution
across the study area is highly heterogeneous, with covered areas varying significantly within individual tiles.
A single tile may contain completely empty regions—ideally suited for the Vector-Raster method—alongside
densely built areas where the Raster-Raster method performs optimally.



Accelerating Large-scale, Hi-res Raster Data Processing Workflows • 3

2.3.1 Adaptive Method Selection

A straightforward approach would involve establishing a polygon count threshold to determine method selection.
However, given the substantial variation in tile sizes shown in Figure 2, simple polygon count thresholds prove
unreliable. A more robust solution employs polygon occupancy rate as the decision metric:

𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦𝑅𝑎𝑡𝑒 =
Area(polygons)
Area(raster)

× 100% (1)

For each sub-tile, the processing strategy follows:

Do


Nothing, if no building polygon found
Vector-Raster method, if 𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦𝑅𝑎𝑡𝑒 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 %
Raster-Raster method, if 𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦𝑅𝑎𝑡𝑒 ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 %

(2)

2.3.2 Spatial Partitioning (Tiling)

To maximize the effectiveness of this adaptive approach, we implement hierarchical spatial partitioning by
subdividing tiles into sub-tiles. This finer granularity also serves a critical purpose, as it creates regions that
approach the extreme cases where each base method excels—either sparsely populated areas favoring Vector-
Raster processing or densely built zones optimal for Raster-Raster operations.

This adaptive partitioning strategy enables the algorithm to dynamically select the most efficient processing
method based on local polygon density characteristics rather than global tile properties, resulting in significant
performance improvements across diverse urban morphologies.

3 Dataset

The dataset used in this study is designed to measure PV potential; accordingly, the tile files follow the naming
format pv_xx_yy.tif (shown here in monospaced font). Throughout this report, this format will be used, or
simply abbreviated as tile xx_yy.

Four sample tiles were selected to test various scenarios. Their overall statistics are presented in Table 1, and
visualizations are provided in Figures 1 and 2. Note that while the pixels themselves are square, the tiles vary
slightly in shape and size.

Each tile typically covers an area of around one hundred million square meters, with dimensions exceeding
100, 000 × 100, 000 pixels. Additionally, the distribution of buildings can differ from tile to tile; this variation is
addressed using the 𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦𝑅𝑎𝑡𝑒 metric defined in Eq. 1.

Tile Buildings No. Building Area (𝑚2) Tile Area (𝑚2) Occupancy Rate

pv_18_42.tif 102,584 9,422,577.69 99,656,663.04 9.46%
pv_18_43.tif 54,215 5,103,095.15 102,770,933.76 4.97%
pv_20_50.tif 60,522 6,309,149.57 99,656,663.04 6.33%
pv_24_52.tif 13,008 1,879,524.32 99,656,663.04 1.89%

Table 1. Building coverage statistics for selected tiles

4 Experiments

In Section 2, three approaches are explained: the Vector–Raster Method (baseline solution), the Raster–Raster
Method, and a Hybrid Method.

To conduct a fair comparative evaluation, all methods must be assessed under consistent experimental conditions.
While the Vector–Raster Method (baseline) can operate effectively without spatial partitioning, the Raster–Raster
Method requires substantial memory resources that exceed available system capacity when processing entire tiles
simultaneously. To enable fair comparison, all methods are evaluated using the same tiling approach, which also



4 • Ming-Chieh Hu

Fig. 1. Tile division overview

(a) Building polygons in tile 18_42 (b) Building polygons in tile 18_43

(c) Building polygons in tile 20_50 (d) Building polygons in tile 24_52

Fig. 2. Building footprints in the extent of the 4 tiles



Accelerating Large-scale, Hi-res Raster Data Processing Workflows • 5

allows the Hybrid Method to achieve performance gains through adaptive method selection based on polygon
occupancy rate within sub-tiles.

To isolate the algorithmic contributions from tiling effects, the experimental evaluation consists of two compo-
nents:

(1) Performance evaluation across tiling schemes: Evaluate all three methods (Vector-Raster, Raster-
Raster, and Hybrid) across a range of tiling schemes from 1×1 to 32×32 sub-tiles. This analysis determines
each method’s performance characteristics across different spatial granularities and identifies optimal
tiling configurations for each method.

(2) Parameter optimization: Evaluate and determine the optimal 𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦𝑅𝑎𝑡𝑒 threshold for the Hybrid
Method.

This experimental design ensures that performance comparisons reflect genuine algorithmic differences rather
than memory limitations or implementation-specific optimizations. The results and analysis are presented in
Sections 4.1, 4.2. The hardware and software specification for experiments is listed in Table 7.

4.1 Comprehensive Evaluation Across Different Tiling Schemes

Currently, we have several variables to consider: the 𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦𝑅𝑎𝑡𝑒 threshold, the tiling scheme, and the choice
of method. To enable fair comparisons, we made a reasonable assumption: the 𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦𝑅𝑎𝑡𝑒 threshold should
lie between 1.89% (from tile 24_52) and 9.46% (from tile 18_42), based on their observed overall occupancy rates.
After examining Table 1, we selected a threshold of 5%, which will be further evaluated in Section 4.2.

The comprehensive evaluation tests all three methods (Vector-Raster, Raster-Raster, and Hybrid) across a range
of tiling schemes, from 1 × 1 to 32 × 32 sub-tiles. The corresponding approximate tile sizes are 120000 × 120000,
60000 × 60000, 30000 × 30000, 15000 × 15000, 7500 × 7500, and 3800 × 3800. Note that the exact tile sizes vary
slightly.

As shown in Table 2, the proposed Hybrid method performs significantly better than the other methods on tile
18_42, while delivering comparable or slightly improved results on tiles 18_43, 20_50, and 24_52. Here, "OOM"
indicates an out-of-memory error. Additional analysis plots are provided in Appendix A.2.

What is particularly interesting is how the optimal tiling scheme varies across different tiles... for tiles 18_42
and 18_43, the sweet spot is around 16 × 16 subdivision, while tile 20_50 performs best with 8 × 8 tiling. This
suggests that the optimal granularity depends on the specific data characteristics and occupancy patterns.

Interestingly, chunking large rasters into smaller tiles yields substantial runtime improvements—even greater
than the gains from combining the two methods into a hybrid approach. For instance, the Vector-Raster baseline
method takes 985 seconds without tiling, but only 216 seconds with 8 × 8 tiling. This trend holds across most
files. The improvement is due not only to the higher chance of skipping sparse tiles at finer granularity but also
to the non-linear reduction in the time complexity of parallel task allocation. For the Raster-Raster method, the
runtime also improves since the reduction in file I/O time outweighs the added loop overhead. However, there is
clearly a point of diminishing returns... pushing to 32 × 32 subdivision often degrades performance again, likely
because the overhead of managing too many small tiles starts to outweigh the computational benefits.

Tile 24_52 consistently shows the fastest processing (around 2-4ms per million pixels for most configurations),
while tile 18_42 requires significantly more computation time (up to 63ms per million pixels without tiling). This
dramatic difference aligns with their occupancy rates and suggests that sparse tiles with lower occupancy are
inherently easier to process, regardless of the method used.

As expected, the Vector-Raster method performs better when the 𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦𝑅𝑎𝑡𝑒 is low, whereas the Raster-
Raster method is more efficient at higher occupancy levels. The Hybrid method consistently outperforms both by
adapting to the characteristics of the data and leveraging the strengths of each approach. For our use case file
size, it is found that the 16 × 16 tile division is the best performing one, and that roughly equals to 7500 × 7500
in tiling pixel size. The hybrid approach never falls below the performance of the better base method, which
validates our assumption that intelligent method selection based on local occupancy can indeed provide consistent
improvements across diverse data characteristics.



6 • Ming-Chieh Hu

Tile Method Runtime 1×1 2×2 4×4 8×8 16×16 32×32

pv_18_42.tif

Vector-Raster Total (s) 985.505 398.752 245.695 216.634 253.420 323.891
Per Million Pixels (ms) 63.290 25.608 15.779 13.912 16.275 20.800

Raster-Raster Total (s) OOM 337.848 296.932 227.194 186.532 188.549
Per Million Pixels (ms) OOM 21.697 19.069 14.590 11.979 12.109

Hybrid Total (s) OOM 238.201 217.938 148.166 134.384 154.702
Per Million Pixels (ms) OOM 15.297 13.996 9.515 8.630 9.935

Total Pixels 15,571,353,600

pv_18_43.tif

Vector-Raster Total (s) 281.743 147.008 115.622 115.935 134.343 180.174
Per Million Pixels (ms) 17.545 9.155 7.200 7.220 8.366 11.220

Raster-Raster Total (s) OOM 298.452 265.435 190.590 171.499 134.049
Per Million Pixels (ms) OOM 18.586 16.530 11.869 10.680 8.348

Hybrid Total (s) 281.743 236.581 167.613 103.805 95.701 101.246
Per Million Pixels (ms) 17.545 14.733 10.438 6.464 5.960 6.305

Total Pixels 16,057,958,400

pv_20_50.tif

Vector-Raster Total (s) 473.175 255.222 156.194 137.599 182.913 210.498
Per Million Pixels (ms) 30.388 16.390 10.031 8.837 11.747 13.518

Raster-Raster Total (s) OOM 321.916 282.401 213.208 161.890 130.942
Per Million Pixels (ms) OOM 20.674 18.136 13.692 10.397 8.409

Hybrid Total (s) OOM 140.365 165.669 101.345 101.555 112.995
Per Million Pixels (ms) OOM 9.014 10.639 6.508 6.522 7.257

Total Pixels 15,571,353,600

pv_24_52.tif

Vector-Raster Total (s) 35.026 34.996 33.421 37.349 50.348 66.506
Per Million Pixels (ms) 2.249 2.247 2.146 2.399 3.233 4.271

Raster-Raster Total (s) OOM 276.111 238.266 186.414 125.425 82.681
Per Million Pixels (ms) OOM 17.732 15.302 11.972 8.055 5.310

Hybrid Total (s) 35.026 31.998 38.161 40.804 44.051 47.890
Per Million Pixels (ms) 2.249 2.055 2.451 2.620 2.829 3.076

Total Pixels 15,571,353,600
Table 2. LONG

4.2 Parameter Optimization Across Different 𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦𝑅𝑎𝑡𝑒 Thresholds

As the effect of tiling scheme is displayed in Section 4.1, the best-performing parameter to divide tiles is fixed to
be 16×16. In this part, we further evaluate the Hybrid method using candidate𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦𝑅𝑎𝑡𝑒 thresholds of 0.02,
0.03, 0.04, 0.05, 0.06, 0.07 and 0.08.

From the Tables 3, 4, 5 and 6 one can see that this experiment can not really find the best best param out, as
the optimal threshold varies depending on the spatial distribution of buildings within each tile. Notably, only
tile 18_42 demonstrates improved performance when utilizing a higher proportion of the Raster-Raster method,
while the other tiles perform better with greater reliance on the Baseline method. tile 18_42 achieves minimum
runtime at 0.06 threshold, while tiles 18_43 and 20_50 perform best at 0.05 and 0.08 respectively, and tile 24_52
shows optimal performance at 0.07.

This variation reflects the adaptive nature of the hybrid approach, where tiles with different building densities
and spatial patterns benefit from different decision boundaries between the Baseline and Raster-Raster Methods.
However, the performance differences between threshold values are relatively small, with runtime variations
typically within 10-15% of the optimal value. Figures 7, 8, 9 and 10 showcase the detailed plots of the proportion
of each case.



Accelerating Large-scale, Hi-res Raster Data Processing Workflows • 7

Metric \ Threshold 0.02 0.03 0.04 0.05 0.06 0.07 0.08

Tiles Processed with Baseline (%) 25.8 34.0 39.1 41.0 43.4 44.5 46.9
Tiles Processed with Solution 1 (%) 66.8 58.6 53.5 51.6 49.2 48.0 45.7
Tiles Skipped (%) 7.4 7.4 7.4 7.4 7.4 7.4 7.4

Runtime: Baseline (s) 10.900 18.525 22.892 25.616 28.721 30.442 35.268
Runtime: Solution 1 (s) 125.441 123.893 109.959 105.627 100.357 102.071 94.030
Runtime: Total (s) 147.787 154.332 144.599 142.793 140.426 144.001 140.517
Runtime Per Million Pixels (ms) 9.491 9.911 9.286 9.170 9.018 9.248 9.024

Total Pixels 15,571,353,600
Table 3. 𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦𝑅𝑎𝑡𝑒 threshold analysis of tile 18_42

Metric \ Threshold 0.02 0.03 0.04 0.05 0.06 0.07 0.08

Tiles Processed with Baseline (%) 42.2 50.0 53.1 56.6 61.3 64.1 65.6
Tiles Processed with Solution 1 (%) 47.7 39.8 36.7 33.2 28.5 25.8 24.2
Tiles Skipped (%) 10.2 10.2 10.2 10.2 10.2 10.2 10.2

Runtime: Baseline (s) 16.556 22.019 24.427 28.531 36.547 39.957 45.169
Runtime: Solution 1 (s) 92.207 79.998 71.493 66.652 62.438 55.585 53.913
Runtime: Total (s) 117.400 110.513 104.184 103.451 107.556 104.080 107.558
Runtime Per Million Pixels (ms) 7.311 6.882 6.488 6.442 6.698 6.482 6.698

Total Pixels 16,057,958,400
Table 4. 𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦𝑅𝑎𝑡𝑒 threshold analysis of tile 18_43

Metric \ Threshold 0.02 0.03 0.04 0.05 0.06 0.07 0.08

Tiles Processed with Baseline (%) 44.5 53.5 57.4 58.2 59.8 61.7 62.5
Tiles Processed with Solution 1 (%) 48.0 39.1 35.2 34.4 32.8 30.9 30.1
Tiles Skipped (%) 7.4 7.4 7.4 7.4 7.4 7.4 7.4

Runtime: Baseline (s) 14.721 21.941 25.225 26.157 28.112 28.966 30.264
Runtime: Solution 1 (s) 90.758 75.132 68.639 68.231 65.156 59.117 57.496
Runtime: Total (s) 114.718 106.420 103.111 103.446 102.286 96.924 96.658
Runtime Per Million Pixels (ms) 7.367 6.834 6.622 6.643 6.569 6.225 6.207

Total Pixels 15,571,353,600
Table 5. 𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦𝑅𝑎𝑡𝑒 threshold analysis of tile 20_50

Metric \ Threshold 0.02 0.03 0.04 0.05 0.06 0.07 0.08

Tiles Processed with Baseline (%) 56.6 64.1 66.8 68.4 71.5 71.5 72.7
Tiles Processed with Solution 1 (%) 21.5 14.1 11.3 9.8 6.6 6.6 5.5
Tiles Skipped (%) 21.9 21.9 21.9 21.9 21.9 21.9 21.9

Runtime: Baseline (s) 15.640 20.585 22.558 23.794 27.664 27.783 30.250
Runtime: Solution 1 (s) 34.660 23.469 19.253 16.795 11.896 11.947 9.865
Runtime: Total (s) 53.563 47.342 45.165 43.913 43.234 42.939 43.594
Runtime Per Million Pixels (ms) 3.440 3.040 2.901 2.820 2.777 2.758 2.800

Total Pixels 15,571,353,600
Table 6. 𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦𝑅𝑎𝑡𝑒 threshold analysis of tile 24_52



8 • Ming-Chieh Hu

5 Conclusion

This study presented a comprehensive evaluation of three computational approaches for raster-vector processing:
the Vector-Raster method (baseline), the Raster-Raster method, and a Hybrid method that adaptively selects
between the two based on local polygon occupancy rates.

5.1 Key Findings

Our initial hypothesis that the Hybrid method would outperform individual approaches through adaptive method
selection was confirmed. The Hybrid approach consistently matched or exceeded the performance of the better
base method across all test cases, validating our assumption that intelligent method selection based on local
occupancy characteristics can provide consistent improvements across diverse spatial data patterns.

Through exhaustive testing across multiple tiling schemes (from 1 × 1 to 32 × 32 subdivisions) and occupancy
rate thresholds (0.02 to 0.08), we demonstrated that the optimal configuration varies significantly with spatial
data characteristics. The Hybrid method achieved performance gains of up to 733% compared to the baseline
method on dense tiles like 18_42, while maintaining comparable efficiency on sparse tiles.

However, themost significant and unexpected findingwas that spatial tiling itself provides substantial performance
improvements that often exceed the gains from algorithmic hybridization. For instance, the Vector-Raster baseline
method improved from 985 seconds without tiling to 216 seconds with 8 × 8 tiling on tile 18_42—a 4.5× speedup.
This improvement stems from both the ability to skip sparse regions and the non-linear reduction in computational
complexity through parallel task allocation.

5.2 Limitations

Several limitations should be acknowledged. First, our evaluation was conducted on a limited set of four repre-
sentative tiles, which may not capture the full spectrum of spatial data characteristics encountered in operational
environments. Second, the memory constraints that necessitated tiling for the Raster-Raster method may have in-
fluenced the comparative results, potentially masking the true performance characteristics of each algorithmwhen
unconstrained by memory limitations. Third, the occupancy rate threshold optimization revealed that optimal
parameters are highly data-dependent, suggesting that a fixed threshold may not be suitable for heterogeneous
datasets requiring automated processing pipelines.

5.3 Future Work

Several research directions emerge from this work. First, developing adaptive threshold selection mechanisms
that can automatically determine optimal occupancy rate parameters based on real-time analysis of spatial
data characteristics would enhance the practical applicability of the Hybrid method. Second, investigating
the scalability of these approaches to larger datasets and different spatial resolutions would provide insights
into their operational viability. Third, exploring alternative spatial partitioning strategies beyond regular grid
tiling—such as adaptive quadtree decomposition or feature-aware partitioning—could potentially yield further
performance improvements. Finally, extending the evaluation to include additional computational methods
and diverse geospatial processing tasks would help establish the broader applicability of hybrid computational
approaches in geomatics applications.

The demonstrated effectiveness of spatial tiling suggests that future research should prioritize spatial data
structures and partitioning strategies as fundamental components of high-performance geospatial computing,
rather than treating them merely as implementation details.



Accelerating Large-scale, Hi-res Raster Data Processing Workflows • 9

A Additional Information

A.1 Hardware and Software Specification

Component Specification

Device MacBook Pro, 14-inch (2021)
Chip Apple M1 Pro
CPU 8-core (6 performance + 2 efficiency)
Memory Bandwidth 200 GB/s
Memory 16 GB unified memory
Operating System macOS Sonoma 14.7.1
Python Version 3.13.0

Table 7. Hardware and software specification

A.2 Comprehensive Evaluation: Detailed Plots

Fig. 3. Tile division analysis of tile 18_42

Fig. 4. Tile division analysis of tile 18_43



10 • Ming-Chieh Hu

Fig. 5. Tile division analysis of tile 20_50

Fig. 6. Tile division analysis of tile 24_52



Accelerating Large-scale, Hi-res Raster Data Processing Workflows • 11

A.3 Evaluation Across Different Thresholds: Detailed Plots

Fig. 7. 𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦𝑅𝑎𝑡𝑒 threshold analysis of tile 18_42

Fig. 8. 𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦𝑅𝑎𝑡𝑒 threshold analysis of tile 18_43



12 • Ming-Chieh Hu

Fig. 9. 𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦𝑅𝑎𝑡𝑒 threshold analysis of tile 20_50

Fig. 10. 𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦𝑅𝑎𝑡𝑒 threshold analysis of tile 24_52


	1 Introduction
	2 Methodology
	2.1 Vector-Raster Method (Baseline)
	2.2 Raster-Raster Method (Proposed)
	2.3 Hybrid Method (Proposed, best-performing)

	3 Dataset
	4 Experiments
	4.1 Comprehensive Evaluation Across Different Tiling Schemes
	4.2 Parameter Optimization Across Different OccupancyRate Thresholds

	5 Conclusion
	5.1 Key Findings
	5.2 Limitations
	5.3 Future Work

	A Additional Information
	A.1 Hardware and Software Specification
	A.2 Comprehensive Evaluation: Detailed Plots
	A.3 Evaluation Across Different Thresholds: Detailed Plots


